{"title":"局部结构和金属氧杂化对碱土金属(Mg2+、Ca2+、Sr2+)取代的 LaFeO3 陶瓷的电学和磁学特性的影响","authors":"Subhajit Nandy, Mya Theingi, Sayan Ghosh, Keun Hwa Chae, C. Sudakar","doi":"10.1063/5.0222233","DOIUrl":null,"url":null,"abstract":"Pristine and alkaline-earth metal-substituted LaFeO3 (La1−xAxFeO3−δ; x = 0 and 0.2; A = Mg2+, Ca2+, and Sr2+) sintered ceramics are prepared from nanoparticles synthesized via a low-temperature citrate sol–gel technique. X-ray diffraction studies confirm the formation of a phase-pure LaFeO3 structure without any secondary phases for all the La1−xAxFeO3−δ compositions. LaFeO3 and La0.8Mg0.2FeO3−δ ceramics show Raman active modes related to La vibration, oxygen octahedral tilting, bending, and stretching. The optical bandgap is estimated to be 2.34 eV for pure LaFeO3 and reduces to 2.23 eV for La0.8Mg0.2FeO3−δ ceramics. On the contrary, La0.8Ca0.2FeO3−δ and La0.8Sr0.2FeO3−δ ceramics show no features in Raman spectra, consistent with the observation of metallic nature and diffuse band edge without any indication of sharp band edge noted. X-ray absorption spectroscopy (XAS) studies on La-L3 and Fe-K-edges confirm the oxidation states of La3+ and Fe3+ in all these ceramics. Local structural distortions and formation of oxygen vacancies in La0.8A0.2FeO3−δ (A = Mg2+, Ca2+, and Sr2+) ceramics are discerned from XAS structure analysis compared to the pristine LaFeO3 ceramics. Magnetic measurements of La1−xAxFeO3−δ reveal weak ferromagnetic nature except for La0.8Mg0.2FeO3−δ, which shows a large magnetization of 4.6 (6.7) emu/g at 300 (5) K. The ferromagnetic behavior of La0.8Mg0.2FeO3−δ ceramics seems to originate from the modification of hybridization between Fe(3d)–O(2p), La(5d)–O(2p), and Fe(4sp)–O(2p) orbitals. An anomalous magnetic transition observed only in zero-field-cooled curves at 88 K in La0.8Ca0.2FeO3−δ and La0.8Sr0.2FeO3−δ ceramics is correlated to the formation of new electronic states containing O 2p character as discerned from pre-peak O-K-edge.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of local structure and metal-oxygen hybridization on the electrical and magnetic properties of alkaline earth metal (Mg2+, Ca2+, Sr2+) substituted LaFeO3 ceramics\",\"authors\":\"Subhajit Nandy, Mya Theingi, Sayan Ghosh, Keun Hwa Chae, C. Sudakar\",\"doi\":\"10.1063/5.0222233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pristine and alkaline-earth metal-substituted LaFeO3 (La1−xAxFeO3−δ; x = 0 and 0.2; A = Mg2+, Ca2+, and Sr2+) sintered ceramics are prepared from nanoparticles synthesized via a low-temperature citrate sol–gel technique. X-ray diffraction studies confirm the formation of a phase-pure LaFeO3 structure without any secondary phases for all the La1−xAxFeO3−δ compositions. LaFeO3 and La0.8Mg0.2FeO3−δ ceramics show Raman active modes related to La vibration, oxygen octahedral tilting, bending, and stretching. The optical bandgap is estimated to be 2.34 eV for pure LaFeO3 and reduces to 2.23 eV for La0.8Mg0.2FeO3−δ ceramics. On the contrary, La0.8Ca0.2FeO3−δ and La0.8Sr0.2FeO3−δ ceramics show no features in Raman spectra, consistent with the observation of metallic nature and diffuse band edge without any indication of sharp band edge noted. X-ray absorption spectroscopy (XAS) studies on La-L3 and Fe-K-edges confirm the oxidation states of La3+ and Fe3+ in all these ceramics. Local structural distortions and formation of oxygen vacancies in La0.8A0.2FeO3−δ (A = Mg2+, Ca2+, and Sr2+) ceramics are discerned from XAS structure analysis compared to the pristine LaFeO3 ceramics. Magnetic measurements of La1−xAxFeO3−δ reveal weak ferromagnetic nature except for La0.8Mg0.2FeO3−δ, which shows a large magnetization of 4.6 (6.7) emu/g at 300 (5) K. The ferromagnetic behavior of La0.8Mg0.2FeO3−δ ceramics seems to originate from the modification of hybridization between Fe(3d)–O(2p), La(5d)–O(2p), and Fe(4sp)–O(2p) orbitals. An anomalous magnetic transition observed only in zero-field-cooled curves at 88 K in La0.8Ca0.2FeO3−δ and La0.8Sr0.2FeO3−δ ceramics is correlated to the formation of new electronic states containing O 2p character as discerned from pre-peak O-K-edge.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222233\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222233","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Influence of local structure and metal-oxygen hybridization on the electrical and magnetic properties of alkaline earth metal (Mg2+, Ca2+, Sr2+) substituted LaFeO3 ceramics
Pristine and alkaline-earth metal-substituted LaFeO3 (La1−xAxFeO3−δ; x = 0 and 0.2; A = Mg2+, Ca2+, and Sr2+) sintered ceramics are prepared from nanoparticles synthesized via a low-temperature citrate sol–gel technique. X-ray diffraction studies confirm the formation of a phase-pure LaFeO3 structure without any secondary phases for all the La1−xAxFeO3−δ compositions. LaFeO3 and La0.8Mg0.2FeO3−δ ceramics show Raman active modes related to La vibration, oxygen octahedral tilting, bending, and stretching. The optical bandgap is estimated to be 2.34 eV for pure LaFeO3 and reduces to 2.23 eV for La0.8Mg0.2FeO3−δ ceramics. On the contrary, La0.8Ca0.2FeO3−δ and La0.8Sr0.2FeO3−δ ceramics show no features in Raman spectra, consistent with the observation of metallic nature and diffuse band edge without any indication of sharp band edge noted. X-ray absorption spectroscopy (XAS) studies on La-L3 and Fe-K-edges confirm the oxidation states of La3+ and Fe3+ in all these ceramics. Local structural distortions and formation of oxygen vacancies in La0.8A0.2FeO3−δ (A = Mg2+, Ca2+, and Sr2+) ceramics are discerned from XAS structure analysis compared to the pristine LaFeO3 ceramics. Magnetic measurements of La1−xAxFeO3−δ reveal weak ferromagnetic nature except for La0.8Mg0.2FeO3−δ, which shows a large magnetization of 4.6 (6.7) emu/g at 300 (5) K. The ferromagnetic behavior of La0.8Mg0.2FeO3−δ ceramics seems to originate from the modification of hybridization between Fe(3d)–O(2p), La(5d)–O(2p), and Fe(4sp)–O(2p) orbitals. An anomalous magnetic transition observed only in zero-field-cooled curves at 88 K in La0.8Ca0.2FeO3−δ and La0.8Sr0.2FeO3−δ ceramics is correlated to the formation of new electronic states containing O 2p character as discerned from pre-peak O-K-edge.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces