以高信度有效逼近传播维度

Kevin Dunne
{"title":"以高信度有效逼近传播维度","authors":"Kevin Dunne","doi":"arxiv-2408.14590","DOIUrl":null,"url":null,"abstract":"The concepts of spread and spread dimension of a metric space were introduced\nby Willerton in the context of quantifying biodiversity of ecosystems. In\nprevious work, we developed the theoretical basis for applications of spread\ndimension as an intrinsic dimension estimator. In this paper we introduce the\npseudo spread dimension which is an efficient approximation of spread\ndimension, and we derive a formula for the standard error associated with this\napproximation.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiently Approximating Spread Dimension with High Confidence\",\"authors\":\"Kevin Dunne\",\"doi\":\"arxiv-2408.14590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concepts of spread and spread dimension of a metric space were introduced\\nby Willerton in the context of quantifying biodiversity of ecosystems. In\\nprevious work, we developed the theoretical basis for applications of spread\\ndimension as an intrinsic dimension estimator. In this paper we introduce the\\npseudo spread dimension which is an efficient approximation of spread\\ndimension, and we derive a formula for the standard error associated with this\\napproximation.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

威勒顿(Willerton)在量化生态系统的生物多样性时提出了度量空间的扩散和扩散维度的概念。在之前的工作中,我们为作为内在维度估计器的扩散维度的应用奠定了理论基础。在本文中,我们引入了伪展宽维度,它是展宽维度的有效近似值,我们还推导出了与该近似值相关的标准误差公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficiently Approximating Spread Dimension with High Confidence
The concepts of spread and spread dimension of a metric space were introduced by Willerton in the context of quantifying biodiversity of ecosystems. In previous work, we developed the theoretical basis for applications of spread dimension as an intrinsic dimension estimator. In this paper we introduce the pseudo spread dimension which is an efficient approximation of spread dimension, and we derive a formula for the standard error associated with this approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1