环境波动的速度和模式对人口增长的影响:周期性和随机环境下 Lyapunov 指数的慢极限和快极限近似值

Pierre Monmarché, Sebastian J. Schreiber, Édouard Strickler
{"title":"环境波动的速度和模式对人口增长的影响:周期性和随机环境下 Lyapunov 指数的慢极限和快极限近似值","authors":"Pierre Monmarché, Sebastian J. Schreiber, Édouard Strickler","doi":"arxiv-2408.11179","DOIUrl":null,"url":null,"abstract":"We examine to what extent the tempo and mode of environmental fluctuations\nmatter for the growth of structured populations. The models are switching,\nlinear ordinary differential equations $x'(t)=A(\\sigma(\\omega t))x(t)$ where\n$x(t)=(x_1(t),\\dots,x_d(t))$ corresponds to the population densities in the $d$\nindividual states, $\\sigma(t)$ is a piece-wise constant function representing\nthe fluctuations in the environmental states $1,\\dots,N$, $\\omega$ is the\nfrequency of the environmental fluctuations, and $A(1),\\dots,A(n)$ are Metzler\nmatrices. $\\sigma(t)$ can either be a periodic function or correspond to a\ncontinuous-time Markov chain. Under suitable conditions, there is a Lyapunov\nexponent $\\Lambda(\\omega)$ such that $\\lim_{t\\to\\infty} \\frac{1}{t}\\log\\sum_i\nx_i(t)=\\Lambda(\\omega)$ for all non-negative, non-zero initial conditions\n$x(0)$ (with probability one in the random case). For both forms of switching,\nwe derive analytical first-order and second-order approximations of\n$\\Lambda(\\omega)$ in the limits of slow ($\\omega\\to 0$) and fast\n($\\omega\\to\\infty$) environmental fluctuations. When the order of switching and\nthe average switching times are equal, we show that the first-order\napproximations of $\\Lambda(\\omega)$ are equivalent in the slow-switching limit,\nbut not in the fast-switching limit. We illustrate our results with\napplications to stage-structured and spatially-structured models. When\ndispersal rates are symmetric, the first order approximations suggest that\npopulation growth rates increase with the frequency of switching -- consistent\nwith earlier work on periodic switching. In the absence of dispersal symmetry,\nwe demonstrate that $\\Lambda(\\omega)$ can be non-monotonic in $\\omega$. In\nconclusion, our results show how population growth rates depend on the tempo\n($\\omega$) and mode (random versus deterministic) of the environmental\nfluctuations.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Tempo and Mode of Environmental Fluctuations on Population Growth: Slow- and Fast-Limit Approximations of Lyapunov Exponents for Periodic and Random Environments\",\"authors\":\"Pierre Monmarché, Sebastian J. Schreiber, Édouard Strickler\",\"doi\":\"arxiv-2408.11179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine to what extent the tempo and mode of environmental fluctuations\\nmatter for the growth of structured populations. The models are switching,\\nlinear ordinary differential equations $x'(t)=A(\\\\sigma(\\\\omega t))x(t)$ where\\n$x(t)=(x_1(t),\\\\dots,x_d(t))$ corresponds to the population densities in the $d$\\nindividual states, $\\\\sigma(t)$ is a piece-wise constant function representing\\nthe fluctuations in the environmental states $1,\\\\dots,N$, $\\\\omega$ is the\\nfrequency of the environmental fluctuations, and $A(1),\\\\dots,A(n)$ are Metzler\\nmatrices. $\\\\sigma(t)$ can either be a periodic function or correspond to a\\ncontinuous-time Markov chain. Under suitable conditions, there is a Lyapunov\\nexponent $\\\\Lambda(\\\\omega)$ such that $\\\\lim_{t\\\\to\\\\infty} \\\\frac{1}{t}\\\\log\\\\sum_i\\nx_i(t)=\\\\Lambda(\\\\omega)$ for all non-negative, non-zero initial conditions\\n$x(0)$ (with probability one in the random case). For both forms of switching,\\nwe derive analytical first-order and second-order approximations of\\n$\\\\Lambda(\\\\omega)$ in the limits of slow ($\\\\omega\\\\to 0$) and fast\\n($\\\\omega\\\\to\\\\infty$) environmental fluctuations. When the order of switching and\\nthe average switching times are equal, we show that the first-order\\napproximations of $\\\\Lambda(\\\\omega)$ are equivalent in the slow-switching limit,\\nbut not in the fast-switching limit. We illustrate our results with\\napplications to stage-structured and spatially-structured models. When\\ndispersal rates are symmetric, the first order approximations suggest that\\npopulation growth rates increase with the frequency of switching -- consistent\\nwith earlier work on periodic switching. In the absence of dispersal symmetry,\\nwe demonstrate that $\\\\Lambda(\\\\omega)$ can be non-monotonic in $\\\\omega$. In\\nconclusion, our results show how population growth rates depend on the tempo\\n($\\\\omega$) and mode (random versus deterministic) of the environmental\\nfluctuations.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了环境波动的节奏和模式对结构化种群增长的影响程度。模型是线性常微分方程$x'(t)=A(\sigma(\omega t))x(t)$ 其中$x(t)=(x_1(t),\dots,x_d(t))$ 对应于$d$个体状态下的种群密度、$sigma(t)$是一个片断常数函数,代表环境状态的波动,$1,\dots,N$, $\omega$是环境波动的频率,$A(1),\dots,A(n)$是Metzlermatrices。$\sigma(t)$既可以是周期函数,也可以对应于连续时间马尔可夫链。在合适的条件下,存在一个Lyapunovexponent $\Lambda(\omega)$ ,使得$\lim_{t\to\infty}.\对于所有非负、非零的初始条件$x(0)$(在随机情况下概率为一),都存在一个Lyapunovexponent $Lambda(\omega)$。对于这两种形式的切换,我们推导了在慢速($\omega\to 0$)和快速($\omega\to\infty$)环境波动极限下$Lambda(\omega)$的一阶和二阶分析近似值。当切换阶数和平均切换时间相等时,我们证明在慢切换极限中,$Lambda(\omega)$ 的一阶近似值是等价的,但在快切换极限中则不然。我们应用阶段结构模型和空间结构模型来说明我们的结果。当分散率对称时,一阶近似表明种群增长率随着切换频率的增加而增加--这与早期关于周期性切换的研究一致。在没有分散对称性的情况下,我们证明$\Lambda(\omega)$在$\omega$中可能是非单调的。总之,我们的结果显示了种群增长率如何取决于环境波动的节奏($\omega$)和模式(随机还是确定)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of Tempo and Mode of Environmental Fluctuations on Population Growth: Slow- and Fast-Limit Approximations of Lyapunov Exponents for Periodic and Random Environments
We examine to what extent the tempo and mode of environmental fluctuations matter for the growth of structured populations. The models are switching, linear ordinary differential equations $x'(t)=A(\sigma(\omega t))x(t)$ where $x(t)=(x_1(t),\dots,x_d(t))$ corresponds to the population densities in the $d$ individual states, $\sigma(t)$ is a piece-wise constant function representing the fluctuations in the environmental states $1,\dots,N$, $\omega$ is the frequency of the environmental fluctuations, and $A(1),\dots,A(n)$ are Metzler matrices. $\sigma(t)$ can either be a periodic function or correspond to a continuous-time Markov chain. Under suitable conditions, there is a Lyapunov exponent $\Lambda(\omega)$ such that $\lim_{t\to\infty} \frac{1}{t}\log\sum_i x_i(t)=\Lambda(\omega)$ for all non-negative, non-zero initial conditions $x(0)$ (with probability one in the random case). For both forms of switching, we derive analytical first-order and second-order approximations of $\Lambda(\omega)$ in the limits of slow ($\omega\to 0$) and fast ($\omega\to\infty$) environmental fluctuations. When the order of switching and the average switching times are equal, we show that the first-order approximations of $\Lambda(\omega)$ are equivalent in the slow-switching limit, but not in the fast-switching limit. We illustrate our results with applications to stage-structured and spatially-structured models. When dispersal rates are symmetric, the first order approximations suggest that population growth rates increase with the frequency of switching -- consistent with earlier work on periodic switching. In the absence of dispersal symmetry, we demonstrate that $\Lambda(\omega)$ can be non-monotonic in $\omega$. In conclusion, our results show how population growth rates depend on the tempo ($\omega$) and mode (random versus deterministic) of the environmental fluctuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1