Yankun Huo, Wenyuan Liu, Yajiao He, Hongjie Wang, Jun Cheng, Changfeng Ke
{"title":"通过含氟分子的自组装提高氧化铝绝缘体的真空表面闪络电压","authors":"Yankun Huo, Wenyuan Liu, Yajiao He, Hongjie Wang, Jun Cheng, Changfeng Ke","doi":"10.1063/5.0219587","DOIUrl":null,"url":null,"abstract":"In this study, a fluorocarbon chain was grafted on the surface of the alumina insulator through the molecule self-assembly of perfluorododecyl trichlorosilane to enhance the vacuum surface flashover voltage. A hydrocarbon chain with the same molecular structure, devoid of fluorine element, was also grafted through the self-assembly of dodecyl trichlorosilane to enable comparison. The surface state examination of the self-assembled alumina insulators shows that both the molecules are attached to the alumina surface. The arrangement of the molecules on the surface is regular. Surface property tests reveal that the fluorocarbon chain endows the surface of alumina with a lower secondary electron emission yield and a lower gas adsorption volume than the hydrocarbon chain. Correspondingly, the surface flashover voltage of the fluorocarbon chain grafted insulator is higher than that of the hydrocarbon chain. This implies that the surface flashover voltage can be improved through surface fluorination, which converts hydrocarbon bonds to fluorocarbon bonds. The study demonstrates this possibility at the molecule level.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"43 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing vacuum surface flashover voltage of alumina insulator by self-assembly of fluorine-containing molecule\",\"authors\":\"Yankun Huo, Wenyuan Liu, Yajiao He, Hongjie Wang, Jun Cheng, Changfeng Ke\",\"doi\":\"10.1063/5.0219587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a fluorocarbon chain was grafted on the surface of the alumina insulator through the molecule self-assembly of perfluorododecyl trichlorosilane to enhance the vacuum surface flashover voltage. A hydrocarbon chain with the same molecular structure, devoid of fluorine element, was also grafted through the self-assembly of dodecyl trichlorosilane to enable comparison. The surface state examination of the self-assembled alumina insulators shows that both the molecules are attached to the alumina surface. The arrangement of the molecules on the surface is regular. Surface property tests reveal that the fluorocarbon chain endows the surface of alumina with a lower secondary electron emission yield and a lower gas adsorption volume than the hydrocarbon chain. Correspondingly, the surface flashover voltage of the fluorocarbon chain grafted insulator is higher than that of the hydrocarbon chain. This implies that the surface flashover voltage can be improved through surface fluorination, which converts hydrocarbon bonds to fluorocarbon bonds. The study demonstrates this possibility at the molecule level.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219587\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0219587","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Enhancing vacuum surface flashover voltage of alumina insulator by self-assembly of fluorine-containing molecule
In this study, a fluorocarbon chain was grafted on the surface of the alumina insulator through the molecule self-assembly of perfluorododecyl trichlorosilane to enhance the vacuum surface flashover voltage. A hydrocarbon chain with the same molecular structure, devoid of fluorine element, was also grafted through the self-assembly of dodecyl trichlorosilane to enable comparison. The surface state examination of the self-assembled alumina insulators shows that both the molecules are attached to the alumina surface. The arrangement of the molecules on the surface is regular. Surface property tests reveal that the fluorocarbon chain endows the surface of alumina with a lower secondary electron emission yield and a lower gas adsorption volume than the hydrocarbon chain. Correspondingly, the surface flashover voltage of the fluorocarbon chain grafted insulator is higher than that of the hydrocarbon chain. This implies that the surface flashover voltage can be improved through surface fluorination, which converts hydrocarbon bonds to fluorocarbon bonds. The study demonstrates this possibility at the molecule level.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces