J. A. Don Jayamanne, R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, J.-R. Burie
{"title":"用光子多普勒速度测量法复原喷出岩中的粒子速度和大小分布","authors":"J. A. Don Jayamanne, R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, J.-R. Burie","doi":"10.1063/5.0220642","DOIUrl":null,"url":null,"abstract":"When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovering particle velocity and size distributions in ejecta with photon Doppler velocimetry\",\"authors\":\"J. A. Don Jayamanne, R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, J.-R. Burie\",\"doi\":\"10.1063/5.0220642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0220642\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0220642","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Recovering particle velocity and size distributions in ejecta with photon Doppler velocimetry
When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces