BimOnBrp 衍生的 Bi2O2CO3 中卤化物引导的碳亲和性活性位点用于高效电催化 CO2 还原成甲酸盐

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-08-26 DOI:10.1039/d4cy00904e
Dengye Yang , Qing Mao , Yuting Feng , Wei Zhou
{"title":"BimOnBrp 衍生的 Bi2O2CO3 中卤化物引导的碳亲和性活性位点用于高效电催化 CO2 还原成甲酸盐","authors":"Dengye Yang ,&nbsp;Qing Mao ,&nbsp;Yuting Feng ,&nbsp;Wei Zhou","doi":"10.1039/d4cy00904e","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth oxyhalides (Bi<sub>m</sub>O<sub>n</sub>X<sub>p</sub>, where X represents Cl, Br, and I) present a promising family of template catalysts for <em>in situ</em> Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> synthesis to achieve the highly efficient CO<sub>2</sub> electrochemical reduction reaction (CO<sub>2</sub>RR) toward formate. However, the specific mechanism behind Bi<sub>m</sub>O<sub>n</sub>X<sub>p</sub>s' structural reconstruction and their subsequent effects on CO<sub>2</sub>RR performance remain unresolved inquiries. In this study, a comprehensive investigation into how halogens (Cl, Br, and I) influence Bi<sub>m</sub>O<sub>n</sub>X<sub>p</sub> CO<sub>2</sub>RR performance was conducted. It is suggested that Br is capable of introducing a bismuth-rich phase (Bi<sub>24</sub>O<sub>31</sub>Br<sub>10</sub>) in BiOBr, which promotes the formation of external Bi–O structural characteristics and leads to exceptional CO<sub>2</sub>RR performance, with a faradaic efficiency (FE<sub>HCOO −</sub>) of 90.67% and a formate partial current density (<em>J</em><sub>HCOO −</sub>) of 52.31 mA cm<sup>−2</sup>, surpassing those of BiOCl and BiOI. Kinetic simulations suggest that the alternative Bi–O structure will promote the combination of the Bi–O structure and carbon-based intermediates, leading to the improved kinetics of the rate-determining step, and ultimately resulting in better CO<sub>2</sub>RR performance.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halide-guided carbon-affinity active sites in BimOnBrp-derived Bi2O2CO3 for efficient electrocatalytic CO2 reduction to formate†\",\"authors\":\"Dengye Yang ,&nbsp;Qing Mao ,&nbsp;Yuting Feng ,&nbsp;Wei Zhou\",\"doi\":\"10.1039/d4cy00904e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bismuth oxyhalides (Bi<sub>m</sub>O<sub>n</sub>X<sub>p</sub>, where X represents Cl, Br, and I) present a promising family of template catalysts for <em>in situ</em> Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> synthesis to achieve the highly efficient CO<sub>2</sub> electrochemical reduction reaction (CO<sub>2</sub>RR) toward formate. However, the specific mechanism behind Bi<sub>m</sub>O<sub>n</sub>X<sub>p</sub>s' structural reconstruction and their subsequent effects on CO<sub>2</sub>RR performance remain unresolved inquiries. In this study, a comprehensive investigation into how halogens (Cl, Br, and I) influence Bi<sub>m</sub>O<sub>n</sub>X<sub>p</sub> CO<sub>2</sub>RR performance was conducted. It is suggested that Br is capable of introducing a bismuth-rich phase (Bi<sub>24</sub>O<sub>31</sub>Br<sub>10</sub>) in BiOBr, which promotes the formation of external Bi–O structural characteristics and leads to exceptional CO<sub>2</sub>RR performance, with a faradaic efficiency (FE<sub>HCOO −</sub>) of 90.67% and a formate partial current density (<em>J</em><sub>HCOO −</sub>) of 52.31 mA cm<sup>−2</sup>, surpassing those of BiOCl and BiOI. Kinetic simulations suggest that the alternative Bi–O structure will promote the combination of the Bi–O structure and carbon-based intermediates, leading to the improved kinetics of the rate-determining step, and ultimately resulting in better CO<sub>2</sub>RR performance.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324005008\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324005008","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧卤化铋(BimOnXp,其中 X 代表 Cl、Br 和 I)是一种很有前景的模板催化剂,可用于原位合成 Bi2O2CO3,以实现高效的 CO2 电化学还原反应(CO2RR)。然而,BimOnXps 结构重构背后的具体机制及其对 CO2RR 性能的后续影响仍是未解之谜。本研究对卤素(Cl、Br 和 I)如何影响 BimOnXp CO2RR 性能进行了全面调查。结果表明,Br 能够在 BiOBr 中引入富铋相(Bi24O31Br10),从而促进外部 Bi-O 结构特征的形成,并带来优异的 CO2RR 性能,其远红外效率 (FEHCOO-) 为 90.67%,甲酸盐部分电流密度 (JHCOO-) 为 52.31 mA cm-2,超过了 BiOCl 和 BiOI。动力学模拟表明,替代的 Bi-O 结构将促进 Bi-O 结构与碳基中间体的结合,从而改善速率决定步骤的动力学,最终实现更好的 CO2RR 性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Halide-guided carbon-affinity active sites in BimOnBrp-derived Bi2O2CO3 for efficient electrocatalytic CO2 reduction to formate†
Bismuth oxyhalides (BimOnXp, where X represents Cl, Br, and I) present a promising family of template catalysts for in situ Bi2O2CO3 synthesis to achieve the highly efficient CO2 electrochemical reduction reaction (CO2RR) toward formate. However, the specific mechanism behind BimOnXps' structural reconstruction and their subsequent effects on CO2RR performance remain unresolved inquiries. In this study, a comprehensive investigation into how halogens (Cl, Br, and I) influence BimOnXp CO2RR performance was conducted. It is suggested that Br is capable of introducing a bismuth-rich phase (Bi24O31Br10) in BiOBr, which promotes the formation of external Bi–O structural characteristics and leads to exceptional CO2RR performance, with a faradaic efficiency (FEHCOO −) of 90.67% and a formate partial current density (JHCOO −) of 52.31 mA cm−2, surpassing those of BiOCl and BiOI. Kinetic simulations suggest that the alternative Bi–O structure will promote the combination of the Bi–O structure and carbon-based intermediates, leading to the improved kinetics of the rate-determining step, and ultimately resulting in better CO2RR performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1