利用 Nanopore 和 Hi-C 技术进行药用昆虫 Blaps rhynchopetera 染色体级基因组组装。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY DNA Research Pub Date : 2024-09-09 DOI:10.1093/dnares/dsae027
Wei Zhang,Yue Li,Qi Wang,Qun Yu,Yuchen Ma,Lei Huang,Chenggui Zhang,Zizhong Yang,Jiapeng Wang,Huai Xiao
{"title":"利用 Nanopore 和 Hi-C 技术进行药用昆虫 Blaps rhynchopetera 染色体级基因组组装。","authors":"Wei Zhang,Yue Li,Qi Wang,Qun Yu,Yuchen Ma,Lei Huang,Chenggui Zhang,Zizhong Yang,Jiapeng Wang,Huai Xiao","doi":"10.1093/dnares/dsae027","DOIUrl":null,"url":null,"abstract":"The Blaps rhynchopetera Fairmaire is a significant medicinal resource in southwestern China. We utilized Nanopore and Hi-C technologies in combination to generate a high-quality, chromosome-level assembly of the B. rhynchopetera genome and described its genetic features. Genome surveys revealed that B. rhynchopetera is a highly heterozygous species. The assembled genome was 379.24 Mb in size, of which 96.03% was assigned to 20 pseudochromosomes. A total of 212.93 Mb of repeat sequences were annotated and 26,824 protein-coding genes and 837 non-coding RNAs were identified. Phylogenetic analysis indicated that the divergence of the ancestors of B. rhynchopetera and its closely related species Tenebrio molitor at about 85.6 mya. The co-linearity analysis showed that some chromosomes of B. rhynchopetera may have happen fission events and it has a good synteny relationship with Tribolium castaneum. Furthermore, in the enrichment analyses, the gene families related to detoxification and immunity of B. rhynchopetera facilitated the understanding its environmental adaptations, which will serve as a valuable research resource for pest control strategies and conservation efforts of beneficial insects. This high-quality reference genome will also contribute to the conservation of insect species diversity and genetic resources.","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"15 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromosome-level genome assembly of the medicinal insect Blaps rhynchopetera using Nanopore and Hi-C technologies.\",\"authors\":\"Wei Zhang,Yue Li,Qi Wang,Qun Yu,Yuchen Ma,Lei Huang,Chenggui Zhang,Zizhong Yang,Jiapeng Wang,Huai Xiao\",\"doi\":\"10.1093/dnares/dsae027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Blaps rhynchopetera Fairmaire is a significant medicinal resource in southwestern China. We utilized Nanopore and Hi-C technologies in combination to generate a high-quality, chromosome-level assembly of the B. rhynchopetera genome and described its genetic features. Genome surveys revealed that B. rhynchopetera is a highly heterozygous species. The assembled genome was 379.24 Mb in size, of which 96.03% was assigned to 20 pseudochromosomes. A total of 212.93 Mb of repeat sequences were annotated and 26,824 protein-coding genes and 837 non-coding RNAs were identified. Phylogenetic analysis indicated that the divergence of the ancestors of B. rhynchopetera and its closely related species Tenebrio molitor at about 85.6 mya. The co-linearity analysis showed that some chromosomes of B. rhynchopetera may have happen fission events and it has a good synteny relationship with Tribolium castaneum. Furthermore, in the enrichment analyses, the gene families related to detoxification and immunity of B. rhynchopetera facilitated the understanding its environmental adaptations, which will serve as a valuable research resource for pest control strategies and conservation efforts of beneficial insects. This high-quality reference genome will also contribute to the conservation of insect species diversity and genetic resources.\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsae027\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsae027","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

白花蛇舌草是中国西南地区的重要药用资源。我们结合使用了 Nanopore 和 Hi-C 技术,生成了高质量、染色体级的胭脂虫基因组,并描述了其遗传特征。基因组调查显示,B. rhynchopetera 是一个高度杂合的物种。组装的基因组大小为 379.24 Mb,其中 96.03% 被分配到 20 个假染色体上。共注释了 212.93 Mb 的重复序列,鉴定了 26 824 个蛋白质编码基因和 837 个非编码 RNA。系统进化分析表明,菱角虫的祖先与近缘种褐斑天牛的分化时间约为 85.6 mya。共线性分析表明,B. rhynchopetera的部分染色体可能发生过裂变,与Tribolium castaneum具有良好的同源关系。此外,在富集分析中,与菱角蛙解毒和免疫相关的基因家族有助于了解其环境适应性,这将为害虫控制策略和益虫保护工作提供宝贵的研究资源。这一高质量的参考基因组还将有助于保护昆虫物种多样性和遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chromosome-level genome assembly of the medicinal insect Blaps rhynchopetera using Nanopore and Hi-C technologies.
The Blaps rhynchopetera Fairmaire is a significant medicinal resource in southwestern China. We utilized Nanopore and Hi-C technologies in combination to generate a high-quality, chromosome-level assembly of the B. rhynchopetera genome and described its genetic features. Genome surveys revealed that B. rhynchopetera is a highly heterozygous species. The assembled genome was 379.24 Mb in size, of which 96.03% was assigned to 20 pseudochromosomes. A total of 212.93 Mb of repeat sequences were annotated and 26,824 protein-coding genes and 837 non-coding RNAs were identified. Phylogenetic analysis indicated that the divergence of the ancestors of B. rhynchopetera and its closely related species Tenebrio molitor at about 85.6 mya. The co-linearity analysis showed that some chromosomes of B. rhynchopetera may have happen fission events and it has a good synteny relationship with Tribolium castaneum. Furthermore, in the enrichment analyses, the gene families related to detoxification and immunity of B. rhynchopetera facilitated the understanding its environmental adaptations, which will serve as a valuable research resource for pest control strategies and conservation efforts of beneficial insects. This high-quality reference genome will also contribute to the conservation of insect species diversity and genetic resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
期刊最新文献
Chromosome-level genome assembly of Pontederia cordata L. provides insights into its rapid adaptation and variation of flower colors. Genome-resolved analysis of Serratia marcescens SMTT infers niche specialization as a hydrocarbon-degrader. A fully phased, chromosome-scale genome of sugar beet line FC309 enables the discovery of Fusarium yellows resistance QTL. The haplotype-phased genome assembly facilitated the deciphering of the bud dormancy-related QTLs in Prunus mume. Near-complete telomere-to-telomere de novo genome assembly in Egyptian clover (Trifolium alexandrinum).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1