{"title":"以不同速度对运动相关皮层电位进行解码","authors":"Jing Zhang, Cheng Shen, Weihai Chen, Xinzhi Ma, Zilin Liang, Yue Zhang","doi":"10.1007/s11571-024-10164-3","DOIUrl":null,"url":null,"abstract":"<p>The decoding of electroencephalogram (EEG) signals, especially motion-related cortical potentials (MRCP), is vital for the early detection of motor intent before movement execution. To enhance the decoding accuracy of MRCP and promote the application of early motion intention in active rehabilitation training, we propose a method for decoding MRCP signals. Specifically, an experimental paradigm is designed for the efficient capture of MRCP signals. Moreover, a feature extraction method based on differentiation is proposed to effectively characterize action variability. Six subjects were recruited to validate the effectiveness of the decoding method. Experiments such as fixed-window classification, sliding-window detection, and asynchronous analysis demonstrate that the method can detect motion intention 316 milliseconds before action execution and is capable of continuously detecting both rapid and slow movements.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"5 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding of movement-related cortical potentials at different speeds\",\"authors\":\"Jing Zhang, Cheng Shen, Weihai Chen, Xinzhi Ma, Zilin Liang, Yue Zhang\",\"doi\":\"10.1007/s11571-024-10164-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The decoding of electroencephalogram (EEG) signals, especially motion-related cortical potentials (MRCP), is vital for the early detection of motor intent before movement execution. To enhance the decoding accuracy of MRCP and promote the application of early motion intention in active rehabilitation training, we propose a method for decoding MRCP signals. Specifically, an experimental paradigm is designed for the efficient capture of MRCP signals. Moreover, a feature extraction method based on differentiation is proposed to effectively characterize action variability. Six subjects were recruited to validate the effectiveness of the decoding method. Experiments such as fixed-window classification, sliding-window detection, and asynchronous analysis demonstrate that the method can detect motion intention 316 milliseconds before action execution and is capable of continuously detecting both rapid and slow movements.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10164-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10164-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Decoding of movement-related cortical potentials at different speeds
The decoding of electroencephalogram (EEG) signals, especially motion-related cortical potentials (MRCP), is vital for the early detection of motor intent before movement execution. To enhance the decoding accuracy of MRCP and promote the application of early motion intention in active rehabilitation training, we propose a method for decoding MRCP signals. Specifically, an experimental paradigm is designed for the efficient capture of MRCP signals. Moreover, a feature extraction method based on differentiation is proposed to effectively characterize action variability. Six subjects were recruited to validate the effectiveness of the decoding method. Experiments such as fixed-window classification, sliding-window detection, and asynchronous analysis demonstrate that the method can detect motion intention 316 milliseconds before action execution and is capable of continuously detecting both rapid and slow movements.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.