熵驱动的纠缠锻造

Axel Pérez-Obiol, Sergi Masot-Llima, Antonio M. Romero, Javier Menéndez, Arnau Rios, Artur García-Sáez, Bruno Juliá-Díaz
{"title":"熵驱动的纠缠锻造","authors":"Axel Pérez-Obiol, Sergi Masot-Llima, Antonio M. Romero, Javier Menéndez, Arnau Rios, Artur García-Sáez, Bruno Juliá-Díaz","doi":"arxiv-2409.04510","DOIUrl":null,"url":null,"abstract":"Simulating a physical system with variational quantum algorithms is a\nwell-studied approach but challenging to implement in current devices due to\ndemands in qubit number and circuit depth. We show how limited knowledge of the\nsystem, namely the entropy of its subsystems or its entanglement structure, can\nbe used to reduce the cost of these algorithms with entanglement forging. To do\nso, we simulate a Fermi-Hubbard one-dimensional chain with a parametrized\nhopping term, as well as atomic nuclei ${}^{28}$Ne and ${}^{60}$Ti with the\nnuclear shell model. Using an adaptive variational quantum eigensolver we find\nsignificant reductions in both the maximum number of qubits (up to one fourth)\nand the amount of two-qubit gates (over an order of magnitude) required in the\nquantum circuits. Our findings indicate that our method, entropy-driven\nentanglement forging, can be used to adjust quantum simulations to the\nlimitations of current noisy intermediate-scale quantum devices.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy-driven entanglement forging\",\"authors\":\"Axel Pérez-Obiol, Sergi Masot-Llima, Antonio M. Romero, Javier Menéndez, Arnau Rios, Artur García-Sáez, Bruno Juliá-Díaz\",\"doi\":\"arxiv-2409.04510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating a physical system with variational quantum algorithms is a\\nwell-studied approach but challenging to implement in current devices due to\\ndemands in qubit number and circuit depth. We show how limited knowledge of the\\nsystem, namely the entropy of its subsystems or its entanglement structure, can\\nbe used to reduce the cost of these algorithms with entanglement forging. To do\\nso, we simulate a Fermi-Hubbard one-dimensional chain with a parametrized\\nhopping term, as well as atomic nuclei ${}^{28}$Ne and ${}^{60}$Ti with the\\nnuclear shell model. Using an adaptive variational quantum eigensolver we find\\nsignificant reductions in both the maximum number of qubits (up to one fourth)\\nand the amount of two-qubit gates (over an order of magnitude) required in the\\nquantum circuits. Our findings indicate that our method, entropy-driven\\nentanglement forging, can be used to adjust quantum simulations to the\\nlimitations of current noisy intermediate-scale quantum devices.\",\"PeriodicalId\":501573,\"journal\":{\"name\":\"arXiv - PHYS - Nuclear Theory\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用变分量子算法模拟物理系统是一种经过深入研究的方法,但由于对量子比特数量和电路深度的要求,在目前的设备上实现这种方法具有挑战性。我们展示了如何利用系统的有限知识(即子系统的熵或纠缠结构)来降低这些算法的纠缠锻造成本。为此,我们模拟了带有参数跳变项的费米-哈伯德一维链,以及带有核壳模型的原子核${}^{28}$Ne和${}^{60}$Ti。利用自适应变分量子求解器,我们发现量子电路所需的最大量子比特数(高达四分之一)和双量子比特门的数量(超过一个数量级)都显著减少。我们的研究结果表明,我们的方法--熵驱动的纠缠锻造--可以用来调整量子模拟,以适应当前嘈杂的中尺度量子设备的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy-driven entanglement forging
Simulating a physical system with variational quantum algorithms is a well-studied approach but challenging to implement in current devices due to demands in qubit number and circuit depth. We show how limited knowledge of the system, namely the entropy of its subsystems or its entanglement structure, can be used to reduce the cost of these algorithms with entanglement forging. To do so, we simulate a Fermi-Hubbard one-dimensional chain with a parametrized hopping term, as well as atomic nuclei ${}^{28}$Ne and ${}^{60}$Ti with the nuclear shell model. Using an adaptive variational quantum eigensolver we find significant reductions in both the maximum number of qubits (up to one fourth) and the amount of two-qubit gates (over an order of magnitude) required in the quantum circuits. Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of current noisy intermediate-scale quantum devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quark saturation in the QCD phase diagram Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei Optimization of Nuclear Mass Models Using Algorithms and Neural Networks Far-from-equilibrium attractors with Full Relativistic Boltzmann approach in 3+1 D: moments of distribution function and anisotropic flows $v_n$ Photo-nuclear reaction rates of $^{157,159}$Ho and $^{163,165}$Tm and their impact in the $γ$--process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1