MLody -- 深度学习生成的极化同步辐射系数

Jordy Davelaar
{"title":"MLody -- 深度学习生成的极化同步辐射系数","authors":"Jordy Davelaar","doi":"arxiv-2409.08007","DOIUrl":null,"url":null,"abstract":"Polarized synchrotron emission is a fundamental process in high-energy\nastrophysics, particularly in the environments around black holes and pulsars.\nAccurate modeling of this emission requires precise computation of the\nemission, absorption, rotation, and conversion coefficients, which are critical\nfor radiative transfer simulations. Traditionally, these coefficients are\nderived using fit functions based on precomputed ground truth values. However,\nthese fit functions often lack accuracy, particularly in specific plasma\nconditions not well represented in the datasets used to generate them. In this\nwork, we introduce ${\\tt MLody}$, a deep neural network designed to compute\npolarized synchrotron coefficients with high accuracy across a wide range of\nplasma parameters. We demonstrate ${\\tt MLody}$'s capabilities by integrating\nit with a radiative transfer code to generate synthetic polarized synchrotron\nimages for an accreting black hole simulation. Our results reveal significant\ndifferences, up to a factor of two, in both linear and circular polarization\ncompared to traditional methods. These differences could have important\nimplications for parameter estimation in Event Horizon Telescope observations,\nsuggesting that ${\\tt MLody}$ could enhance the accuracy of future\nastrophysical analyses.","PeriodicalId":501343,"journal":{"name":"arXiv - PHYS - High Energy Astrophysical Phenomena","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MLody -- Deep Learning Generated Polarized Synchrotron Coefficients\",\"authors\":\"Jordy Davelaar\",\"doi\":\"arxiv-2409.08007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polarized synchrotron emission is a fundamental process in high-energy\\nastrophysics, particularly in the environments around black holes and pulsars.\\nAccurate modeling of this emission requires precise computation of the\\nemission, absorption, rotation, and conversion coefficients, which are critical\\nfor radiative transfer simulations. Traditionally, these coefficients are\\nderived using fit functions based on precomputed ground truth values. However,\\nthese fit functions often lack accuracy, particularly in specific plasma\\nconditions not well represented in the datasets used to generate them. In this\\nwork, we introduce ${\\\\tt MLody}$, a deep neural network designed to compute\\npolarized synchrotron coefficients with high accuracy across a wide range of\\nplasma parameters. We demonstrate ${\\\\tt MLody}$'s capabilities by integrating\\nit with a radiative transfer code to generate synthetic polarized synchrotron\\nimages for an accreting black hole simulation. Our results reveal significant\\ndifferences, up to a factor of two, in both linear and circular polarization\\ncompared to traditional methods. These differences could have important\\nimplications for parameter estimation in Event Horizon Telescope observations,\\nsuggesting that ${\\\\tt MLody}$ could enhance the accuracy of future\\nastrophysical analyses.\",\"PeriodicalId\":501343,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Astrophysical Phenomena\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

偏振同步辐射是高能天体物理学中的一个基本过程,尤其是在黑洞和脉冲星周围环境中。这种辐射的精确建模需要精确计算辐射、吸收、旋转和转换系数,这些系数对于辐射传递模拟至关重要。传统上,这些系数是根据预先计算的地面真实值使用拟合函数求得的。然而,这些拟合函数往往缺乏准确性,特别是在用于生成这些函数的数据集中没有很好体现的特定等离子体条件下。在这项工作中,我们介绍了一种深度神经网络--{tt MLody}$,它可以在广泛的等离子体参数范围内高精度地计算极化同步辐射系数。我们通过将{tt MLody}$与辐射传递代码整合,为一个增殖黑洞模拟生成合成极化同步辐射图像,展示了{tt MLody}$的能力。我们的结果表明,与传统方法相比,我们在线性偏振和圆偏振方面的差异都很大,最多可达两倍。这些差异可能会对事件地平线望远镜观测的参数估计产生重要影响,表明${tt MLody}$可以提高未来天体物理分析的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MLody -- Deep Learning Generated Polarized Synchrotron Coefficients
Polarized synchrotron emission is a fundamental process in high-energy astrophysics, particularly in the environments around black holes and pulsars. Accurate modeling of this emission requires precise computation of the emission, absorption, rotation, and conversion coefficients, which are critical for radiative transfer simulations. Traditionally, these coefficients are derived using fit functions based on precomputed ground truth values. However, these fit functions often lack accuracy, particularly in specific plasma conditions not well represented in the datasets used to generate them. In this work, we introduce ${\tt MLody}$, a deep neural network designed to compute polarized synchrotron coefficients with high accuracy across a wide range of plasma parameters. We demonstrate ${\tt MLody}$'s capabilities by integrating it with a radiative transfer code to generate synthetic polarized synchrotron images for an accreting black hole simulation. Our results reveal significant differences, up to a factor of two, in both linear and circular polarization compared to traditional methods. These differences could have important implications for parameter estimation in Event Horizon Telescope observations, suggesting that ${\tt MLody}$ could enhance the accuracy of future astrophysical analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchrotron self-Compton in a radiative-adiabatic fireball scenario: Modelling the multiwavelength observations in some Fermi/LAT bursts X-ray view of emission lines in optical spectra: Spectral analysis of the two low-mass X-ray binary systems Swift J1357.2-0933 and MAXI J1305-704 A Revised Spin of the Black Hole in GRS 1716-249 with a New Distance Multimessenger astronomy Spectro-temporal study of atoll source GX 9+9 observed with AstroSat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1