Mara Pisani, Fabiana Calandra, Antonio Rinaldi, Federica Cella, Fabiana Tedeschi, Iole Boffa, Nicola Brunetti-Pierri, Annamaria Carissimo, Francesco Napolitano, Velia Siciliano
{"title":"通过计算识别小分子,利用哺乳动物细胞中的合成电路提高基因表达量","authors":"Mara Pisani, Fabiana Calandra, Antonio Rinaldi, Federica Cella, Fabiana Tedeschi, Iole Boffa, Nicola Brunetti-Pierri, Annamaria Carissimo, Francesco Napolitano, Velia Siciliano","doi":"10.1101/2024.09.05.611507","DOIUrl":null,"url":null,"abstract":"Engineering mammalian cells with synthetic circuits is leading the charge in next generation biotherapeutics and industrial biotech innovation. However, applications often depend on the cells' productive capacity, which is limited by the finite cellular resources available. We have previously shown that cells engineered with incoherent feedforward loops (iFFL-cells) operate at higher capacity than those engineered with the open loop (OL). Here, we performed RNA-sequencing on cells expressing the iFFL and utilized DECCODE, an unbiased computational method, to match our data with thousands of drug-induced transcriptional profiles. DECCODE identified compounds that consistently enhance expression of both transiently and stably expressed genetic payloads across various experimental scenarios and cell lines, while also reducing external perturbations on integrated genes. Further, we show that drug treatment enhances the rate of AAV and lentivirus transduction, facilitating the prototyping of genetic devices for gene and cell therapies. Altogether, despite limiting intracellular resources is a pervasive, and strongly cell-dependent problem, we provide a versatile tool for a wide range of biomedical and industrial applications that demand enhanced productivity from engineered cells.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational identification of small molecules for increased gene expression by synthetic circuits in mammalian cells\",\"authors\":\"Mara Pisani, Fabiana Calandra, Antonio Rinaldi, Federica Cella, Fabiana Tedeschi, Iole Boffa, Nicola Brunetti-Pierri, Annamaria Carissimo, Francesco Napolitano, Velia Siciliano\",\"doi\":\"10.1101/2024.09.05.611507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering mammalian cells with synthetic circuits is leading the charge in next generation biotherapeutics and industrial biotech innovation. However, applications often depend on the cells' productive capacity, which is limited by the finite cellular resources available. We have previously shown that cells engineered with incoherent feedforward loops (iFFL-cells) operate at higher capacity than those engineered with the open loop (OL). Here, we performed RNA-sequencing on cells expressing the iFFL and utilized DECCODE, an unbiased computational method, to match our data with thousands of drug-induced transcriptional profiles. DECCODE identified compounds that consistently enhance expression of both transiently and stably expressed genetic payloads across various experimental scenarios and cell lines, while also reducing external perturbations on integrated genes. Further, we show that drug treatment enhances the rate of AAV and lentivirus transduction, facilitating the prototyping of genetic devices for gene and cell therapies. Altogether, despite limiting intracellular resources is a pervasive, and strongly cell-dependent problem, we provide a versatile tool for a wide range of biomedical and industrial applications that demand enhanced productivity from engineered cells.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.611507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational identification of small molecules for increased gene expression by synthetic circuits in mammalian cells
Engineering mammalian cells with synthetic circuits is leading the charge in next generation biotherapeutics and industrial biotech innovation. However, applications often depend on the cells' productive capacity, which is limited by the finite cellular resources available. We have previously shown that cells engineered with incoherent feedforward loops (iFFL-cells) operate at higher capacity than those engineered with the open loop (OL). Here, we performed RNA-sequencing on cells expressing the iFFL and utilized DECCODE, an unbiased computational method, to match our data with thousands of drug-induced transcriptional profiles. DECCODE identified compounds that consistently enhance expression of both transiently and stably expressed genetic payloads across various experimental scenarios and cell lines, while also reducing external perturbations on integrated genes. Further, we show that drug treatment enhances the rate of AAV and lentivirus transduction, facilitating the prototyping of genetic devices for gene and cell therapies. Altogether, despite limiting intracellular resources is a pervasive, and strongly cell-dependent problem, we provide a versatile tool for a wide range of biomedical and industrial applications that demand enhanced productivity from engineered cells.