利用 M13 Phagemid 和基于 CRISPR 的基因调控技术进行细胞间通信,在大肠杆菌中实现多细胞计算

Hadiastri Kusumawardhani, Florian Zoppi, Roberto Avendaño, Yolanda Schaerli
{"title":"利用 M13 Phagemid 和基于 CRISPR 的基因调控技术进行细胞间通信,在大肠杆菌中实现多细胞计算","authors":"Hadiastri Kusumawardhani, Florian Zoppi, Roberto Avendaño, Yolanda Schaerli","doi":"10.1101/2024.08.28.610043","DOIUrl":null,"url":null,"abstract":"Engineering multicellular consortia, where information processing is distributed across specialized cell types, offers a promising strategy for implementing sophisticated biocomputing systems. However, a major challenge remains in establishing orthogonal intercellular communication, or \"wires,\" within synthetic bacterial consortia. In this study, we address this bottleneck by integrating phagemid-mediated intercellular communication with CRISPR-based gene regulation for multicellular computing in synthetic <em>E. coli</em> consortia. We achieve intercellular communication by regulating the transfer of single guide RNAs (sgRNAs) encoded on M13 phagemids from sender to receiver cells. Once inside the receiver cells, the transferred sgRNAs mediate gene regulation via CRISPR interference. Leveraging this approach, we successfully constructed one-, two-, and four-input logic gates. Our work expands the toolkit for intercellular communication and paves the way for complex information processing in synthetic microbial consortia, with diverse potential applications, including biocomputing, biosensing, and biomanufacturing.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Intercellular Communication using M13 Phagemid and CRISPR-based Gene Regulation for Multicellular Computing in Escherichia coli\",\"authors\":\"Hadiastri Kusumawardhani, Florian Zoppi, Roberto Avendaño, Yolanda Schaerli\",\"doi\":\"10.1101/2024.08.28.610043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering multicellular consortia, where information processing is distributed across specialized cell types, offers a promising strategy for implementing sophisticated biocomputing systems. However, a major challenge remains in establishing orthogonal intercellular communication, or \\\"wires,\\\" within synthetic bacterial consortia. In this study, we address this bottleneck by integrating phagemid-mediated intercellular communication with CRISPR-based gene regulation for multicellular computing in synthetic <em>E. coli</em> consortia. We achieve intercellular communication by regulating the transfer of single guide RNAs (sgRNAs) encoded on M13 phagemids from sender to receiver cells. Once inside the receiver cells, the transferred sgRNAs mediate gene regulation via CRISPR interference. Leveraging this approach, we successfully constructed one-, two-, and four-input logic gates. Our work expands the toolkit for intercellular communication and paves the way for complex information processing in synthetic microbial consortia, with diverse potential applications, including biocomputing, biosensing, and biomanufacturing.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.28.610043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.28.610043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多细胞联合体中,信息处理分布在不同的特化细胞类型中,这为实现复杂的生物计算系统提供了一种前景广阔的策略。然而,在合成细菌联合体内建立正交的细胞间通信(或称 "导线")仍是一大挑战。在本研究中,我们将噬菌体介导的细胞间通信与基于 CRISPR 的基因调控相结合,在合成大肠杆菌联合体内实现多细胞计算,从而解决了这一瓶颈问题。我们通过调控 M13 噬菌体上编码的单导 RNA(sgRNA)从发送者细胞向接收者细胞的转移来实现细胞间通信。一旦进入接收细胞,转移的 sgRNA 通过 CRISPR 干扰介导基因调控。利用这种方法,我们成功构建了单输入、双输入和四输入逻辑门。我们的工作拓展了细胞间通信的工具包,为合成微生物联合体中的复杂信息处理铺平了道路,具有生物计算、生物传感和生物制造等多种潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering Intercellular Communication using M13 Phagemid and CRISPR-based Gene Regulation for Multicellular Computing in Escherichia coli
Engineering multicellular consortia, where information processing is distributed across specialized cell types, offers a promising strategy for implementing sophisticated biocomputing systems. However, a major challenge remains in establishing orthogonal intercellular communication, or "wires," within synthetic bacterial consortia. In this study, we address this bottleneck by integrating phagemid-mediated intercellular communication with CRISPR-based gene regulation for multicellular computing in synthetic E. coli consortia. We achieve intercellular communication by regulating the transfer of single guide RNAs (sgRNAs) encoded on M13 phagemids from sender to receiver cells. Once inside the receiver cells, the transferred sgRNAs mediate gene regulation via CRISPR interference. Leveraging this approach, we successfully constructed one-, two-, and four-input logic gates. Our work expands the toolkit for intercellular communication and paves the way for complex information processing in synthetic microbial consortia, with diverse potential applications, including biocomputing, biosensing, and biomanufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNA-templated spatially controlled proteolysis targeting chimeras for CyclinD1-CDK4/6 complex protein degradation Cas9AEY (Cas9-facilitated Homologous Recombination Assembly of non-specific Escherichia coli yeast vector) method of constructing large-sized DNA. Metabolite-responsive Control of Transcription by Phase Separation-based Synthetic Organelles A modular system for programming multistep activation of endogenous genes in stem cells Mutual dependence between membrane phase separation and bacterial division protein dynamics in synthetic cell models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1