"亲爱的,时间跨度很重要":应用 CNN-LSTM 方法预测美国股票 ETF

IF 1.2 4区 经济学 Q3 ECONOMICS Applied Economics Letters Pub Date : 2024-08-30 DOI:10.1080/13504851.2024.2396550
Wenguang Lin
{"title":"\"亲爱的,时间跨度很重要\":应用 CNN-LSTM 方法预测美国股票 ETF","authors":"Wenguang Lin","doi":"10.1080/13504851.2024.2396550","DOIUrl":null,"url":null,"abstract":"The paper uses a hybrid model of convolutional neural network and long short-term memory (CNN-LSTM) to examine the impact of the prediction (or input) window length on the prediction accuracy of tr...","PeriodicalId":8014,"journal":{"name":"Applied Economics Letters","volume":"11 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Darling, time horizon matters”: applying the CNN-LSTM method for predicting US equity ETFs\",\"authors\":\"Wenguang Lin\",\"doi\":\"10.1080/13504851.2024.2396550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper uses a hybrid model of convolutional neural network and long short-term memory (CNN-LSTM) to examine the impact of the prediction (or input) window length on the prediction accuracy of tr...\",\"PeriodicalId\":8014,\"journal\":{\"name\":\"Applied Economics Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Economics Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/13504851.2024.2396550\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/13504851.2024.2396550","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文使用卷积神经网络和长短期记忆(CNN-LSTM)混合模型,研究了预测(或输入)窗口长度对 Tr...的预测准确性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“Darling, time horizon matters”: applying the CNN-LSTM method for predicting US equity ETFs
The paper uses a hybrid model of convolutional neural network and long short-term memory (CNN-LSTM) to examine the impact of the prediction (or input) window length on the prediction accuracy of tr...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
460
期刊介绍: Applied Economics Letters is a companion journal to Applied Economics and Applied Financial Economics. It publishes short accounts of new original research and encourages discussion of papers previously published in its two companion journals. Letters are reviewed by the Editor, a member of the Editorial Board or another suitable authority. They are generally applied in nature, but may include discussion of method and theoretical formulation. In a change to the format of the Applied Financial Series of journals, from 2009 Applied Financial Economics Letters will be incorporated into its sister journal Applied Economics Letters.
期刊最新文献
Predicting directional volatility: HAR model with machine learning integration Insider trading profitability in geographically diversified firms: does managerial ability matter? Public data openness and firm innovation strategies Covid-19 and firm communication: how do mobility constraints affect the conference call sentiment? The (dis-)equalizing effects of production networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1