Chi Wang, Jing-jing Zhu, Yue Qiu, Hui Wang, Yu Xu, Hossein Haghani, Hua Er
{"title":"含螯合胺的质离子液体","authors":"Chi Wang, Jing-jing Zhu, Yue Qiu, Hui Wang, Yu Xu, Hossein Haghani, Hua Er","doi":"10.1007/s10953-024-01408-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this review, we aim to present the unique physicochemical properties of protic ionic liquids (PILs) composed of alkyl (= hexyl, octyl, and 2-ethylhexyl) ethylenediaminium cations paired with trifluoroacetate (= TFA), trifluoromethanesulfonate (= TFS), bis(trifluoromethylsulfonyl)imide (= TFSA) anions, and acyl (= butanoyl, hexanoyl, octanoyl, decanoyl, and dodecanoyl) alaninate anions. Our primary objective is to evaluate the performance of these PILs, particularly those with hexyl- or 2-ethylhexylethylenediaminium cations, which demonstrate the potential for forming room-temperature PILs with lower viscosity and higher electroconductivity. Furthermore, we investigate the thermal degradation temperatures, revealing that PILs with TFSA anions possess the highest thermal stability, followed by TFS, acylalaninate, and TFA anions. The distinctive chelating ethylenediamine moiety in the cationic unit of these PILs, especially in AA-PILs with acylalaninate anions, enhances their ability to encapsulate transition metal ions, making them highly effective for metal ion coordination, with a preference order of Cu<sup>2+</sup> > Co<sup>2+</sup> > Ni<sup>2+</sup>. This study underscores the potential of these PILs for applications in metal-containing wastewater treatment and the synthesis of metal nanomaterials, highlighting their versatility and importance in these fields.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"55 - 72"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protic Ionic Liquids with Chelating Amine\",\"authors\":\"Chi Wang, Jing-jing Zhu, Yue Qiu, Hui Wang, Yu Xu, Hossein Haghani, Hua Er\",\"doi\":\"10.1007/s10953-024-01408-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this review, we aim to present the unique physicochemical properties of protic ionic liquids (PILs) composed of alkyl (= hexyl, octyl, and 2-ethylhexyl) ethylenediaminium cations paired with trifluoroacetate (= TFA), trifluoromethanesulfonate (= TFS), bis(trifluoromethylsulfonyl)imide (= TFSA) anions, and acyl (= butanoyl, hexanoyl, octanoyl, decanoyl, and dodecanoyl) alaninate anions. Our primary objective is to evaluate the performance of these PILs, particularly those with hexyl- or 2-ethylhexylethylenediaminium cations, which demonstrate the potential for forming room-temperature PILs with lower viscosity and higher electroconductivity. Furthermore, we investigate the thermal degradation temperatures, revealing that PILs with TFSA anions possess the highest thermal stability, followed by TFS, acylalaninate, and TFA anions. The distinctive chelating ethylenediamine moiety in the cationic unit of these PILs, especially in AA-PILs with acylalaninate anions, enhances their ability to encapsulate transition metal ions, making them highly effective for metal ion coordination, with a preference order of Cu<sup>2+</sup> > Co<sup>2+</sup> > Ni<sup>2+</sup>. This study underscores the potential of these PILs for applications in metal-containing wastewater treatment and the synthesis of metal nanomaterials, highlighting their versatility and importance in these fields.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"54 1\",\"pages\":\"55 - 72\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01408-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01408-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In this review, we aim to present the unique physicochemical properties of protic ionic liquids (PILs) composed of alkyl (= hexyl, octyl, and 2-ethylhexyl) ethylenediaminium cations paired with trifluoroacetate (= TFA), trifluoromethanesulfonate (= TFS), bis(trifluoromethylsulfonyl)imide (= TFSA) anions, and acyl (= butanoyl, hexanoyl, octanoyl, decanoyl, and dodecanoyl) alaninate anions. Our primary objective is to evaluate the performance of these PILs, particularly those with hexyl- or 2-ethylhexylethylenediaminium cations, which demonstrate the potential for forming room-temperature PILs with lower viscosity and higher electroconductivity. Furthermore, we investigate the thermal degradation temperatures, revealing that PILs with TFSA anions possess the highest thermal stability, followed by TFS, acylalaninate, and TFA anions. The distinctive chelating ethylenediamine moiety in the cationic unit of these PILs, especially in AA-PILs with acylalaninate anions, enhances their ability to encapsulate transition metal ions, making them highly effective for metal ion coordination, with a preference order of Cu2+ > Co2+ > Ni2+. This study underscores the potential of these PILs for applications in metal-containing wastewater treatment and the synthesis of metal nanomaterials, highlighting their versatility and importance in these fields.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.