{"title":"手性氨基酸溶液的稀释热与消旋化","authors":"Matan Oliel, Yitzhak Mastai","doi":"10.1007/s10953-024-01401-8","DOIUrl":null,"url":null,"abstract":"<div><p>Chiral interactions play a crucial role in both chemistry and biology. Understanding the behavior of chiral molecules and their interactions with other molecules is essential, and chiral interactions in solutions are particularly important for studying chiral compounds. Chirality influences the physical and chemical properties of molecules, including solubility, reactivity, and biological activity. In this work, we used isothermal titration calorimetry (ITC), a powerful technique for studying molecular interactions, including chiral interactions in solutions. We conducted a series of ITC measurements to investigate the heat of dilution and the heat of racemization of several amino acids (Asparagine, Histidine, Serine, Alanine, Methionine, and Phenylalanine). We also performed ITC measurements under different solute concentrations and temperatures to examine the effects of these parameters on chiral interactions, as well as the heat of dilution and racemization. The results of our measurements indicated that the heat of dilution, specifically the interactions between the solvent (water) and solute (chiral molecules), had a significant impact compared to the chiral interactions in the solution, which were found to be negligible. This suggests that the interactions between chiral molecules and the solvent play a more dominant role in determining the overall behavior and properties of the system. By studying chiral interactions in solutions, we can gain valuable insights into the behavior of chiral compounds, which can have implications in various fields, including drug design, chemical synthesis, and biological processes.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 12","pages":"1701 - 1714"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-024-01401-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Heat of Dilution and Racemization of Chiral Amino Acid Solutions\",\"authors\":\"Matan Oliel, Yitzhak Mastai\",\"doi\":\"10.1007/s10953-024-01401-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chiral interactions play a crucial role in both chemistry and biology. Understanding the behavior of chiral molecules and their interactions with other molecules is essential, and chiral interactions in solutions are particularly important for studying chiral compounds. Chirality influences the physical and chemical properties of molecules, including solubility, reactivity, and biological activity. In this work, we used isothermal titration calorimetry (ITC), a powerful technique for studying molecular interactions, including chiral interactions in solutions. We conducted a series of ITC measurements to investigate the heat of dilution and the heat of racemization of several amino acids (Asparagine, Histidine, Serine, Alanine, Methionine, and Phenylalanine). We also performed ITC measurements under different solute concentrations and temperatures to examine the effects of these parameters on chiral interactions, as well as the heat of dilution and racemization. The results of our measurements indicated that the heat of dilution, specifically the interactions between the solvent (water) and solute (chiral molecules), had a significant impact compared to the chiral interactions in the solution, which were found to be negligible. This suggests that the interactions between chiral molecules and the solvent play a more dominant role in determining the overall behavior and properties of the system. By studying chiral interactions in solutions, we can gain valuable insights into the behavior of chiral compounds, which can have implications in various fields, including drug design, chemical synthesis, and biological processes.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"53 12\",\"pages\":\"1701 - 1714\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10953-024-01401-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01401-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01401-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Heat of Dilution and Racemization of Chiral Amino Acid Solutions
Chiral interactions play a crucial role in both chemistry and biology. Understanding the behavior of chiral molecules and their interactions with other molecules is essential, and chiral interactions in solutions are particularly important for studying chiral compounds. Chirality influences the physical and chemical properties of molecules, including solubility, reactivity, and biological activity. In this work, we used isothermal titration calorimetry (ITC), a powerful technique for studying molecular interactions, including chiral interactions in solutions. We conducted a series of ITC measurements to investigate the heat of dilution and the heat of racemization of several amino acids (Asparagine, Histidine, Serine, Alanine, Methionine, and Phenylalanine). We also performed ITC measurements under different solute concentrations and temperatures to examine the effects of these parameters on chiral interactions, as well as the heat of dilution and racemization. The results of our measurements indicated that the heat of dilution, specifically the interactions between the solvent (water) and solute (chiral molecules), had a significant impact compared to the chiral interactions in the solution, which were found to be negligible. This suggests that the interactions between chiral molecules and the solvent play a more dominant role in determining the overall behavior and properties of the system. By studying chiral interactions in solutions, we can gain valuable insights into the behavior of chiral compounds, which can have implications in various fields, including drug design, chemical synthesis, and biological processes.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.