{"title":"胆碱升高驱动 KLF5 主导的转录重编程,促进肝癌进展","authors":"Xinrong Li, Zhixiang Hu, Qili Shi, Wenying Qiu, Yizhe Liu, Yanfang Liu, Shenglin Huang, Linhui Liang, Zhiao Chen, Xianghuo He","doi":"10.1038/s41388-024-03150-w","DOIUrl":null,"url":null,"abstract":"An increase in the total choline-containing compound content is a common characteristic of cancer cells, and aberrant choline metabolism in cancer is closely associated with malignant progression. However, the potential role of choline-induced global transcriptional changes in cancer cells remains unclear. In this study, we reveal that an elevated choline content facilitates hepatocellular carcinoma (HCC) cell proliferation by reprogramming Krüppel-like factor 5 (KLF5)-dominated core transcriptional regulatory circuitry (CRC). Mechanistically, choline administration leads to elevated S-adenosylmethionine (SAM) levels, inducing the formation of H3K4me1 within the super-enhancer (SE) region of KLF5 and activating its transcription. KLF5, as a key transcription factor (TF) of CRC established by choline, further transactivates downstream genes to facilitate HCC cell cycle progression. Additionally, KLF5 can increase the expression of choline kinase-α (CHKA) and CTP:phosphocholine cytidylyltransferase (CCT) resulting in a positive feedback loop to promote HCC cell proliferation. Notably, the histone deacetylase inhibitor (HDACi) vorinostat (SAHA) significantly suppressed KLF5 expression and liver tumor growth in mice, leading to a prolonged lifespan. In conclusion, these findings highlight the epigenetic regulatory mechanism of the SE-driven key regulatory factor KLF5 conducted by choline metabolism in HCC and suggest a potential therapeutic strategy for HCC patients with high choline content.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated choline drives KLF5-dominated transcriptional reprogramming to facilitate liver cancer progression\",\"authors\":\"Xinrong Li, Zhixiang Hu, Qili Shi, Wenying Qiu, Yizhe Liu, Yanfang Liu, Shenglin Huang, Linhui Liang, Zhiao Chen, Xianghuo He\",\"doi\":\"10.1038/s41388-024-03150-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increase in the total choline-containing compound content is a common characteristic of cancer cells, and aberrant choline metabolism in cancer is closely associated with malignant progression. However, the potential role of choline-induced global transcriptional changes in cancer cells remains unclear. In this study, we reveal that an elevated choline content facilitates hepatocellular carcinoma (HCC) cell proliferation by reprogramming Krüppel-like factor 5 (KLF5)-dominated core transcriptional regulatory circuitry (CRC). Mechanistically, choline administration leads to elevated S-adenosylmethionine (SAM) levels, inducing the formation of H3K4me1 within the super-enhancer (SE) region of KLF5 and activating its transcription. KLF5, as a key transcription factor (TF) of CRC established by choline, further transactivates downstream genes to facilitate HCC cell cycle progression. Additionally, KLF5 can increase the expression of choline kinase-α (CHKA) and CTP:phosphocholine cytidylyltransferase (CCT) resulting in a positive feedback loop to promote HCC cell proliferation. Notably, the histone deacetylase inhibitor (HDACi) vorinostat (SAHA) significantly suppressed KLF5 expression and liver tumor growth in mice, leading to a prolonged lifespan. In conclusion, these findings highlight the epigenetic regulatory mechanism of the SE-driven key regulatory factor KLF5 conducted by choline metabolism in HCC and suggest a potential therapeutic strategy for HCC patients with high choline content.\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41388-024-03150-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-024-03150-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Elevated choline drives KLF5-dominated transcriptional reprogramming to facilitate liver cancer progression
An increase in the total choline-containing compound content is a common characteristic of cancer cells, and aberrant choline metabolism in cancer is closely associated with malignant progression. However, the potential role of choline-induced global transcriptional changes in cancer cells remains unclear. In this study, we reveal that an elevated choline content facilitates hepatocellular carcinoma (HCC) cell proliferation by reprogramming Krüppel-like factor 5 (KLF5)-dominated core transcriptional regulatory circuitry (CRC). Mechanistically, choline administration leads to elevated S-adenosylmethionine (SAM) levels, inducing the formation of H3K4me1 within the super-enhancer (SE) region of KLF5 and activating its transcription. KLF5, as a key transcription factor (TF) of CRC established by choline, further transactivates downstream genes to facilitate HCC cell cycle progression. Additionally, KLF5 can increase the expression of choline kinase-α (CHKA) and CTP:phosphocholine cytidylyltransferase (CCT) resulting in a positive feedback loop to promote HCC cell proliferation. Notably, the histone deacetylase inhibitor (HDACi) vorinostat (SAHA) significantly suppressed KLF5 expression and liver tumor growth in mice, leading to a prolonged lifespan. In conclusion, these findings highlight the epigenetic regulatory mechanism of the SE-driven key regulatory factor KLF5 conducted by choline metabolism in HCC and suggest a potential therapeutic strategy for HCC patients with high choline content.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.