{"title":"烯丙基醚的电化学三氧化反应","authors":"Yong Jiang, Yajuan Li, Chen Zhu, Tao Shen","doi":"10.1055/s-0040-1720135","DOIUrl":null,"url":null,"abstract":"<p>Trioxygenation is a highly effective method for rapidly increasing molecular complexity by incorporating three C–O bonds from simple, readily available raw materials. In this study, we present an electrochemical trioxygenation protocol for allylarenes, which enables the synthesis of a diverse array of triacetoxylation products without external chemical oxidants. These products, which are difficult to obtain through conventional methods, highlight the potential of electrochemistry in promoting sustainable synthesis.</p> ","PeriodicalId":501298,"journal":{"name":"Synthesis","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Trioxygenation of Allylarenes\",\"authors\":\"Yong Jiang, Yajuan Li, Chen Zhu, Tao Shen\",\"doi\":\"10.1055/s-0040-1720135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Trioxygenation is a highly effective method for rapidly increasing molecular complexity by incorporating three C–O bonds from simple, readily available raw materials. In this study, we present an electrochemical trioxygenation protocol for allylarenes, which enables the synthesis of a diverse array of triacetoxylation products without external chemical oxidants. These products, which are difficult to obtain through conventional methods, highlight the potential of electrochemistry in promoting sustainable synthesis.</p> \",\"PeriodicalId\":501298,\"journal\":{\"name\":\"Synthesis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0040-1720135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0040-1720135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trioxygenation is a highly effective method for rapidly increasing molecular complexity by incorporating three C–O bonds from simple, readily available raw materials. In this study, we present an electrochemical trioxygenation protocol for allylarenes, which enables the synthesis of a diverse array of triacetoxylation products without external chemical oxidants. These products, which are difficult to obtain through conventional methods, highlight the potential of electrochemistry in promoting sustainable synthesis.