{"title":"用于点云压缩的规模自适应非对称稀疏变分自动编码器","authors":"Jian Chen;Yingtao Zhu;Wei Huang;Chengdong Lan;Tiesong Zhao","doi":"10.1109/TBC.2024.3437161","DOIUrl":null,"url":null,"abstract":"Learning-based point cloud compression has achieved great success in Rate-Distortion (RD) efficiency. Existing methods usually utilize Variational AutoEncoder (VAE) network, which might lead to poor detail reconstruction and high computational complexity. To address these issues, we propose a Scale-adaptive Asymmetric Sparse Variational AutoEncoder (SAS-VAE) in this work. First, we develop an Asymmetric Multiscale Sparse Convolution (AMSC), which exploits multi-resolution branches to aggregate multiscale features at encoder, and excludes symmetric feature fusion branches to control the model complexity at decoder. Second, we design a Scale Adaptive Feature Refinement Structure (SAFRS) to adaptively adjust the number of Feature Refinement Modules (FRMs), thereby improving RD performance with an acceptable computational overhead. Third, we implement our framework with AMSC and SAFRS, and train it with an RD loss based on Fine-grained Weighted Binary Cross-Entropy (FWBCE) function. Experimental results on 8iVFB, Owlii, and MVUV datasets show that our method outperforms several popular methods, with a 90.0% time reduction and a 51.8% BD-BR saving compared with V-PCC. The code will be available soon at \n<uri>https://github.com/fancj2017/SAS-VAE</uri>\n.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 3","pages":"884-894"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Adaptive Asymmetric Sparse Variational AutoEncoder for Point Cloud Compression\",\"authors\":\"Jian Chen;Yingtao Zhu;Wei Huang;Chengdong Lan;Tiesong Zhao\",\"doi\":\"10.1109/TBC.2024.3437161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning-based point cloud compression has achieved great success in Rate-Distortion (RD) efficiency. Existing methods usually utilize Variational AutoEncoder (VAE) network, which might lead to poor detail reconstruction and high computational complexity. To address these issues, we propose a Scale-adaptive Asymmetric Sparse Variational AutoEncoder (SAS-VAE) in this work. First, we develop an Asymmetric Multiscale Sparse Convolution (AMSC), which exploits multi-resolution branches to aggregate multiscale features at encoder, and excludes symmetric feature fusion branches to control the model complexity at decoder. Second, we design a Scale Adaptive Feature Refinement Structure (SAFRS) to adaptively adjust the number of Feature Refinement Modules (FRMs), thereby improving RD performance with an acceptable computational overhead. Third, we implement our framework with AMSC and SAFRS, and train it with an RD loss based on Fine-grained Weighted Binary Cross-Entropy (FWBCE) function. Experimental results on 8iVFB, Owlii, and MVUV datasets show that our method outperforms several popular methods, with a 90.0% time reduction and a 51.8% BD-BR saving compared with V-PCC. The code will be available soon at \\n<uri>https://github.com/fancj2017/SAS-VAE</uri>\\n.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 3\",\"pages\":\"884-894\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666159/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666159/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Scale-Adaptive Asymmetric Sparse Variational AutoEncoder for Point Cloud Compression
Learning-based point cloud compression has achieved great success in Rate-Distortion (RD) efficiency. Existing methods usually utilize Variational AutoEncoder (VAE) network, which might lead to poor detail reconstruction and high computational complexity. To address these issues, we propose a Scale-adaptive Asymmetric Sparse Variational AutoEncoder (SAS-VAE) in this work. First, we develop an Asymmetric Multiscale Sparse Convolution (AMSC), which exploits multi-resolution branches to aggregate multiscale features at encoder, and excludes symmetric feature fusion branches to control the model complexity at decoder. Second, we design a Scale Adaptive Feature Refinement Structure (SAFRS) to adaptively adjust the number of Feature Refinement Modules (FRMs), thereby improving RD performance with an acceptable computational overhead. Third, we implement our framework with AMSC and SAFRS, and train it with an RD loss based on Fine-grained Weighted Binary Cross-Entropy (FWBCE) function. Experimental results on 8iVFB, Owlii, and MVUV datasets show that our method outperforms several popular methods, with a 90.0% time reduction and a 51.8% BD-BR saving compared with V-PCC. The code will be available soon at
https://github.com/fancj2017/SAS-VAE
.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”