学习视频压缩的长短期信息传播与融合

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Broadcasting Pub Date : 2024-08-30 DOI:10.1109/TBC.2024.3434702
Shen Wang;Donghui Feng;Guo Lu;Zhengxue Cheng;Li Song;Wenjun Zhang
{"title":"学习视频压缩的长短期信息传播与融合","authors":"Shen Wang;Donghui Feng;Guo Lu;Zhengxue Cheng;Li Song;Wenjun Zhang","doi":"10.1109/TBC.2024.3434702","DOIUrl":null,"url":null,"abstract":"In recent years, numerous learned video compression (LVC) methods have emerged, demonstrating rapid developments and satisfactory performance. However, in most previous methods, only the previous one frame is used as reference. Although some works introduce the usage of the previous multiple frames, the exploitation of temporal information is not comprehensive. Our proposed method not only utilizes the short-term information from multiple neighboring frames but also introduces long-term feature information as the reference, which effectively enhances the quality of the context and improves the compression efficiency. In our scheme, we propose the long-term information exploitation mechanism to capture long-term temporal relevance. The update and propagation of long-term information establish an implicit connection between the latent representation of the current frame and distant reference frames, aiding in the generation of long-term context. Meanwhile, the short-term neighboring frames are also utilized to extract local information and generate short-term context. The fusion of long-term context and short-term context results in a more comprehensive and high-quality context to achieve sufficient temporal information mining. Besides, the multiple frames information also helps to improve the efficiency of motion compression. They are used to generate the predicted motion and remove spatio-temporal redundancies in motion information by second-order motion prediction and fusion. Experimental results demonstrate that our proposed efficient learned video compression scheme can achieve 4.79% BD-rate saving when compared with H.266 (VTM).","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 4","pages":"1254-1265"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term and Short-Term Information Propagation and Fusion for Learned Video Compression\",\"authors\":\"Shen Wang;Donghui Feng;Guo Lu;Zhengxue Cheng;Li Song;Wenjun Zhang\",\"doi\":\"10.1109/TBC.2024.3434702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, numerous learned video compression (LVC) methods have emerged, demonstrating rapid developments and satisfactory performance. However, in most previous methods, only the previous one frame is used as reference. Although some works introduce the usage of the previous multiple frames, the exploitation of temporal information is not comprehensive. Our proposed method not only utilizes the short-term information from multiple neighboring frames but also introduces long-term feature information as the reference, which effectively enhances the quality of the context and improves the compression efficiency. In our scheme, we propose the long-term information exploitation mechanism to capture long-term temporal relevance. The update and propagation of long-term information establish an implicit connection between the latent representation of the current frame and distant reference frames, aiding in the generation of long-term context. Meanwhile, the short-term neighboring frames are also utilized to extract local information and generate short-term context. The fusion of long-term context and short-term context results in a more comprehensive and high-quality context to achieve sufficient temporal information mining. Besides, the multiple frames information also helps to improve the efficiency of motion compression. They are used to generate the predicted motion and remove spatio-temporal redundancies in motion information by second-order motion prediction and fusion. Experimental results demonstrate that our proposed efficient learned video compression scheme can achieve 4.79% BD-rate saving when compared with H.266 (VTM).\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 4\",\"pages\":\"1254-1265\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659718/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10659718/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,出现了许多学习视频压缩(LVC)方法,发展迅速,性能令人满意。然而,在大多数以前的方法中,只使用前一个帧作为参考。虽然有些作品引入了对之前多帧的使用,但对时间信息的利用并不全面。该方法既利用了多个相邻帧的短期信息,又引入了长期特征信息作为参考,有效地增强了上下文的质量,提高了压缩效率。在我们的方案中,我们提出了长期信息利用机制来捕获长期时间相关性。长期信息的更新和传播在当前框架的潜在表征和遥远参考框架之间建立了隐式联系,有助于长期语境的生成。同时,利用短时相邻帧提取局部信息,生成短时上下文。将长期上下文和短期上下文融合,形成更全面、高质量的上下文,实现充分的时间信息挖掘。此外,多帧信息也有助于提高运动压缩的效率。它们用于生成预测运动,并通过二阶运动预测和融合消除运动信息中的时空冗余。实验结果表明,与H.266 (VTM)相比,我们提出的高效学习视频压缩方案可节省4.79%的帧率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-Term and Short-Term Information Propagation and Fusion for Learned Video Compression
In recent years, numerous learned video compression (LVC) methods have emerged, demonstrating rapid developments and satisfactory performance. However, in most previous methods, only the previous one frame is used as reference. Although some works introduce the usage of the previous multiple frames, the exploitation of temporal information is not comprehensive. Our proposed method not only utilizes the short-term information from multiple neighboring frames but also introduces long-term feature information as the reference, which effectively enhances the quality of the context and improves the compression efficiency. In our scheme, we propose the long-term information exploitation mechanism to capture long-term temporal relevance. The update and propagation of long-term information establish an implicit connection between the latent representation of the current frame and distant reference frames, aiding in the generation of long-term context. Meanwhile, the short-term neighboring frames are also utilized to extract local information and generate short-term context. The fusion of long-term context and short-term context results in a more comprehensive and high-quality context to achieve sufficient temporal information mining. Besides, the multiple frames information also helps to improve the efficiency of motion compression. They are used to generate the predicted motion and remove spatio-temporal redundancies in motion information by second-order motion prediction and fusion. Experimental results demonstrate that our proposed efficient learned video compression scheme can achieve 4.79% BD-rate saving when compared with H.266 (VTM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
期刊最新文献
Table of Contents 2024 Scott Helt Memorial Award for the Best Paper Published in the IEEE Transactions on Broadcasting IEEE Transactions on Broadcasting Publication Information IEEE Transactions on Broadcasting Information for Authors Enhancing Channel Estimation in Terrestrial Broadcast Communications Using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1