基于深度对比卷积自动编码器的新颖分选方法,适用于独立于分类的元基因组学数据

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-16 DOI:10.1007/s13562-024-00911-2
Sharanbasappa D. Madival, Girish Kumar Jha, Dwijesh Chandra Mishra, Sunil Kumar, Neeraj Budhlakoti, Anu Sharma, Krishna Kumar Chaturvedi, S. Kabilan, Mohammad Samir Farooqi, Sudhir Srivastava
{"title":"基于深度对比卷积自动编码器的新颖分选方法,适用于独立于分类的元基因组学数据","authors":"Sharanbasappa D. Madival, Girish Kumar Jha, Dwijesh Chandra Mishra, Sunil Kumar, Neeraj Budhlakoti, Anu Sharma, Krishna Kumar Chaturvedi, S. Kabilan, Mohammad Samir Farooqi, Sudhir Srivastava","doi":"10.1007/s13562-024-00911-2","DOIUrl":null,"url":null,"abstract":"<p>In this study, we present an innovative binning approach for metagenomics data that combines Natural Language Processing (NLP) with a Deep Contrastive Convolutional Autoencoder (DCAE). We used NLP for feature extraction, specifically focusing on Tetra-nucleotide frequency (TNF) through CountVec and (Term Frequency -Inverse Document Frequency) TF-IDF, further enriched by integrating GC-Content into their respective feature matrices. The DCAE, equipped with advanced convolutional layers and a contrastive loss function, excels at capturing intricate patterns in the data, providing a sophisticated representation for binning. By applying k-means clustering to the latent representations obtained from the DCAE, our approach consistently achieves impressive results. To assess the performance of our method, we utilized three standard benchmark metagenomics datasets: 10s, 25s, and Sharon datasets. Across all datasets, we observed Silhouette Indices exceeding 0.6 and Rand Indices surpassing 0.8, demonstrating the superior performance of our proposed method. Compared to existing methodologies, our approach not only surpasses the Rand Index and Silhouette Index of current unsupervised methods but also performs on par with semi-supervised methods across datasets. This underscores the effectiveness and versatility of our approach in metagenomics analysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel deep contrastive convolutional autoencoder based binning approach for taxonomic independent metagenomics data\",\"authors\":\"Sharanbasappa D. Madival, Girish Kumar Jha, Dwijesh Chandra Mishra, Sunil Kumar, Neeraj Budhlakoti, Anu Sharma, Krishna Kumar Chaturvedi, S. Kabilan, Mohammad Samir Farooqi, Sudhir Srivastava\",\"doi\":\"10.1007/s13562-024-00911-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we present an innovative binning approach for metagenomics data that combines Natural Language Processing (NLP) with a Deep Contrastive Convolutional Autoencoder (DCAE). We used NLP for feature extraction, specifically focusing on Tetra-nucleotide frequency (TNF) through CountVec and (Term Frequency -Inverse Document Frequency) TF-IDF, further enriched by integrating GC-Content into their respective feature matrices. The DCAE, equipped with advanced convolutional layers and a contrastive loss function, excels at capturing intricate patterns in the data, providing a sophisticated representation for binning. By applying k-means clustering to the latent representations obtained from the DCAE, our approach consistently achieves impressive results. To assess the performance of our method, we utilized three standard benchmark metagenomics datasets: 10s, 25s, and Sharon datasets. Across all datasets, we observed Silhouette Indices exceeding 0.6 and Rand Indices surpassing 0.8, demonstrating the superior performance of our proposed method. Compared to existing methodologies, our approach not only surpasses the Rand Index and Silhouette Index of current unsupervised methods but also performs on par with semi-supervised methods across datasets. This underscores the effectiveness and versatility of our approach in metagenomics analysis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00911-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00911-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们针对元基因组学数据提出了一种创新的分选方法,它将自然语言处理(NLP)与深度对比卷积自动编码器(DCAE)相结合。我们使用 NLP 进行特征提取,特别是通过 CountVec 和(术语频率 - 反向文档频率)TF-IDF 重点关注四核苷酸频率 (TNF),并通过将 GC-Content 整合到各自的特征矩阵中进一步丰富特征。DCAE 配备了先进的卷积层和对比损失函数,善于捕捉数据中错综复杂的模式,为分选提供了复杂的表示方法。通过对从 DCAE 中获得的潜在表示进行 k-means 聚类,我们的方法不断取得令人印象深刻的成果。为了评估我们方法的性能,我们使用了三个标准基准元基因组学数据集:10s、25s 和 Sharon 数据集。在所有数据集上,我们观察到剪影指数超过了 0.6,兰德指数超过了 0.8,这表明我们提出的方法具有卓越的性能。与现有方法相比,我们的方法不仅超越了当前无监督方法的兰德指数和轮廓指数,而且在所有数据集上的表现与半监督方法相当。这凸显了我们的方法在元基因组学分析中的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel deep contrastive convolutional autoencoder based binning approach for taxonomic independent metagenomics data

In this study, we present an innovative binning approach for metagenomics data that combines Natural Language Processing (NLP) with a Deep Contrastive Convolutional Autoencoder (DCAE). We used NLP for feature extraction, specifically focusing on Tetra-nucleotide frequency (TNF) through CountVec and (Term Frequency -Inverse Document Frequency) TF-IDF, further enriched by integrating GC-Content into their respective feature matrices. The DCAE, equipped with advanced convolutional layers and a contrastive loss function, excels at capturing intricate patterns in the data, providing a sophisticated representation for binning. By applying k-means clustering to the latent representations obtained from the DCAE, our approach consistently achieves impressive results. To assess the performance of our method, we utilized three standard benchmark metagenomics datasets: 10s, 25s, and Sharon datasets. Across all datasets, we observed Silhouette Indices exceeding 0.6 and Rand Indices surpassing 0.8, demonstrating the superior performance of our proposed method. Compared to existing methodologies, our approach not only surpasses the Rand Index and Silhouette Index of current unsupervised methods but also performs on par with semi-supervised methods across datasets. This underscores the effectiveness and versatility of our approach in metagenomics analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1