由两种不同热弹性材料制成的实心圆柱体的双相滞后模型

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Mechanics of Composite Materials Pub Date : 2024-08-23 DOI:10.1007/s11029-024-10217-y
S. E. Khader, M. El. M. Khedr
{"title":"由两种不同热弹性材料制成的实心圆柱体的双相滞后模型","authors":"S. E. Khader, M. El. M. Khedr","doi":"10.1007/s11029-024-10217-y","DOIUrl":null,"url":null,"abstract":"<p>A thermoelastic model for a solid cylinder consisting of two different isotropic thermoelastic homogeneous materials is created. Boundary conditions for the heat flow and stress tensors were discussed. A dual-phase lag model was applied to investigate its thermophysical properties. For their numerical evaluation, a two-layered structure with an interfacial thermal contact resistance and an integral elastic wave resistance, as well as some special cases, were considered. This study will be useful for theoretical modeling the thermoelasticity at the nanoscale and for designing nano and multilayered devices, plates, and surface coatings.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Phase Lag Model for a Solid Cylinder Made of Two Different Thermoelastic Materials\",\"authors\":\"S. E. Khader, M. El. M. Khedr\",\"doi\":\"10.1007/s11029-024-10217-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A thermoelastic model for a solid cylinder consisting of two different isotropic thermoelastic homogeneous materials is created. Boundary conditions for the heat flow and stress tensors were discussed. A dual-phase lag model was applied to investigate its thermophysical properties. For their numerical evaluation, a two-layered structure with an interfacial thermal contact resistance and an integral elastic wave resistance, as well as some special cases, were considered. This study will be useful for theoretical modeling the thermoelasticity at the nanoscale and for designing nano and multilayered devices, plates, and surface coatings.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10217-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10217-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

建立了一个由两种不同各向同性热弹性均质材料组成的实心圆柱体热弹性模型。讨论了热流和应力张量的边界条件。应用双相滞后模型来研究其热物理性质。为了对其进行数值评估,考虑了具有界面热接触电阻和整体弹性波电阻的双层结构以及一些特殊情况。这项研究将有助于建立纳米尺度的热弹性理论模型,以及设计纳米和多层器件、板材和表面涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-Phase Lag Model for a Solid Cylinder Made of Two Different Thermoelastic Materials

A thermoelastic model for a solid cylinder consisting of two different isotropic thermoelastic homogeneous materials is created. Boundary conditions for the heat flow and stress tensors were discussed. A dual-phase lag model was applied to investigate its thermophysical properties. For their numerical evaluation, a two-layered structure with an interfacial thermal contact resistance and an integral elastic wave resistance, as well as some special cases, were considered. This study will be useful for theoretical modeling the thermoelasticity at the nanoscale and for designing nano and multilayered devices, plates, and surface coatings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Composite Materials
Mechanics of Composite Materials 工程技术-材料科学:复合
CiteScore
2.90
自引率
17.60%
发文量
73
审稿时长
12 months
期刊介绍: Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to: damage, failure, fatigue, and long-term strength; methods of optimum design of materials and structures; prediction of long-term properties and aging problems; nondestructive testing; mechanical aspects of technology; mechanics of nanocomposites; mechanics of biocomposites; composites in aerospace and wind-power engineering; composites in civil engineering and infrastructure and other composites applications.
期刊最新文献
Analysis of Free Vibration and Low-Velocity Impact Response on Sandwich Cylindrical Shells Containing Fluid Mechanical Properties-Based Reliability Optimization Design of GFRP Culvert Dual-Phase Lag Model for a Solid Cylinder Made of Two Different Thermoelastic Materials Free Vibration Analysis of Functionally Graded Nano Graphene Composite Sandwich Plates Resting on a Winkler-Pasternak Foundation Multiphysics Homogenization and Localization of Wavy Brick-And-Mortar Architectures with Piezoelectric Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1