T. Aydemir, G. D. Kugabaeva, K. A. Kydralieva, L. S. Bondarenko, O. V. Tushavina, I. E. Uflyand, G. I. Dzhardimalieva
{"title":"填充了金属聚合物复合物和 FeCo/C-N 纳米粒子的复合材料的阻尼比较","authors":"T. Aydemir, G. D. Kugabaeva, K. A. Kydralieva, L. S. Bondarenko, O. V. Tushavina, I. E. Uflyand, G. I. Dzhardimalieva","doi":"10.1007/s11029-024-10216-z","DOIUrl":null,"url":null,"abstract":"<p>Materials based on hybrid bimetallic particles with a polyacrylamide shell can act as an efficient centers of energy dissipation in filled composites and reveal more effectiveness than nanoparticles, which, due to their higher surface-to-volume ratio and low interfacial adhesion, can affect the final composite performance. Two types of fillers were obtained as part of polymer-mediated synthesis and subsequent thermolysis and later encapsulated into a LDPE matrix. The metal-polymer complex increases the damping capacity of the hosting material up to 25% at higher concentration. However, the nanoparticles showed a strong increase at 5 wt% (by 20%) and then a sharp decline, which makes metal-polymer particles more suitable for damping purposes.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Damping of Composite Materials Filled With Metal Polymer Complex and FeCo/C-N Nanoparticles\",\"authors\":\"T. Aydemir, G. D. Kugabaeva, K. A. Kydralieva, L. S. Bondarenko, O. V. Tushavina, I. E. Uflyand, G. I. Dzhardimalieva\",\"doi\":\"10.1007/s11029-024-10216-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Materials based on hybrid bimetallic particles with a polyacrylamide shell can act as an efficient centers of energy dissipation in filled composites and reveal more effectiveness than nanoparticles, which, due to their higher surface-to-volume ratio and low interfacial adhesion, can affect the final composite performance. Two types of fillers were obtained as part of polymer-mediated synthesis and subsequent thermolysis and later encapsulated into a LDPE matrix. The metal-polymer complex increases the damping capacity of the hosting material up to 25% at higher concentration. However, the nanoparticles showed a strong increase at 5 wt% (by 20%) and then a sharp decline, which makes metal-polymer particles more suitable for damping purposes.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10216-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10216-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Comparative Damping of Composite Materials Filled With Metal Polymer Complex and FeCo/C-N Nanoparticles
Materials based on hybrid bimetallic particles with a polyacrylamide shell can act as an efficient centers of energy dissipation in filled composites and reveal more effectiveness than nanoparticles, which, due to their higher surface-to-volume ratio and low interfacial adhesion, can affect the final composite performance. Two types of fillers were obtained as part of polymer-mediated synthesis and subsequent thermolysis and later encapsulated into a LDPE matrix. The metal-polymer complex increases the damping capacity of the hosting material up to 25% at higher concentration. However, the nanoparticles showed a strong increase at 5 wt% (by 20%) and then a sharp decline, which makes metal-polymer particles more suitable for damping purposes.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.