Deep-MacroFin:用于连续时间经济模型的知情均衡神经网络

Yuntao Wu, Jiayuan Guo, Goutham Gopalakrishna, Zisis Poulos
{"title":"Deep-MacroFin:用于连续时间经济模型的知情均衡神经网络","authors":"Yuntao Wu, Jiayuan Guo, Goutham Gopalakrishna, Zisis Poulos","doi":"arxiv-2408.10368","DOIUrl":null,"url":null,"abstract":"In this paper, we present Deep-MacroFin, a comprehensive framework designed\nto solve partial differential equations, with a particular focus on models in\ncontinuous time economics. This framework leverages deep learning\nmethodologies, including conventional Multi-Layer Perceptrons and the newly\ndeveloped Kolmogorov-Arnold Networks. It is optimized using economic\ninformation encapsulated by Hamilton-Jacobi-Bellman equations and coupled\nalgebraic equations. The application of neural networks holds the promise of\naccurately resolving high-dimensional problems with fewer computational demands\nand limitations compared to standard numerical methods. This versatile\nframework can be readily adapted for elementary differential equations, and\nsystems of differential equations, even in cases where the solutions may\nexhibit discontinuities. Importantly, it offers a more straightforward and\nuser-friendly implementation than existing libraries.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-MacroFin: Informed Equilibrium Neural Network for Continuous Time Economic Models\",\"authors\":\"Yuntao Wu, Jiayuan Guo, Goutham Gopalakrishna, Zisis Poulos\",\"doi\":\"arxiv-2408.10368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present Deep-MacroFin, a comprehensive framework designed\\nto solve partial differential equations, with a particular focus on models in\\ncontinuous time economics. This framework leverages deep learning\\nmethodologies, including conventional Multi-Layer Perceptrons and the newly\\ndeveloped Kolmogorov-Arnold Networks. It is optimized using economic\\ninformation encapsulated by Hamilton-Jacobi-Bellman equations and coupled\\nalgebraic equations. The application of neural networks holds the promise of\\naccurately resolving high-dimensional problems with fewer computational demands\\nand limitations compared to standard numerical methods. This versatile\\nframework can be readily adapted for elementary differential equations, and\\nsystems of differential equations, even in cases where the solutions may\\nexhibit discontinuities. Importantly, it offers a more straightforward and\\nuser-friendly implementation than existing libraries.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了 Deep-MacroFin,这是一个旨在求解偏微分方程的综合框架,尤其侧重于连续时间经济学模型。该框架利用深度学习方法,包括传统的多层感知器和新开发的 Kolmogorov-Arnold 网络。它利用由汉密尔顿-雅各比-贝尔曼方程和耦合代数方程封装的经济信息进行优化。与标准数值方法相比,神经网络的应用有望减少计算需求和限制,准确解决高维问题。这种多用途框架可以很容易地适用于初等微分方程和微分方程系统,即使在解可能表现出不连续性的情况下也是如此。重要的是,与现有库相比,它提供了更直接和用户友好的实现方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep-MacroFin: Informed Equilibrium Neural Network for Continuous Time Economic Models
In this paper, we present Deep-MacroFin, a comprehensive framework designed to solve partial differential equations, with a particular focus on models in continuous time economics. This framework leverages deep learning methodologies, including conventional Multi-Layer Perceptrons and the newly developed Kolmogorov-Arnold Networks. It is optimized using economic information encapsulated by Hamilton-Jacobi-Bellman equations and coupled algebraic equations. The application of neural networks holds the promise of accurately resolving high-dimensional problems with fewer computational demands and limitations compared to standard numerical methods. This versatile framework can be readily adapted for elementary differential equations, and systems of differential equations, even in cases where the solutions may exhibit discontinuities. Importantly, it offers a more straightforward and user-friendly implementation than existing libraries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1