增强风险投资中的初创企业成功预测:GraphRAG 多变量时间序列增强方法

Gao Zitian, Xiao Yihao
{"title":"增强风险投资中的初创企业成功预测:GraphRAG 多变量时间序列增强方法","authors":"Gao Zitian, Xiao Yihao","doi":"arxiv-2408.09420","DOIUrl":null,"url":null,"abstract":"In the Venture Capital(VC) industry, predicting the success of startups is\nchallenging due to limited financial data and the need for subjective revenue\nforecasts. Previous methods based on time series analysis or deep learning\noften fall short as they fail to incorporate crucial inter-company\nrelationships such as competition and collaboration. Regarding the issues, we\npropose a novel approach using GrahphRAG augmented time series model. With\nGraphRAG, time series predictive methods are enhanced by integrating these\nvital relationships into the analysis framework, allowing for a more dynamic\nunderstanding of the startup ecosystem in venture capital. Our experimental\nresults demonstrate that our model significantly outperforms previous models in\nstartup success predictions. To the best of our knowledge, our work is the\nfirst application work of GraphRAG.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Startup Success Predictions in Venture Capital: A GraphRAG Augmented Multivariate Time Series Method\",\"authors\":\"Gao Zitian, Xiao Yihao\",\"doi\":\"arxiv-2408.09420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Venture Capital(VC) industry, predicting the success of startups is\\nchallenging due to limited financial data and the need for subjective revenue\\nforecasts. Previous methods based on time series analysis or deep learning\\noften fall short as they fail to incorporate crucial inter-company\\nrelationships such as competition and collaboration. Regarding the issues, we\\npropose a novel approach using GrahphRAG augmented time series model. With\\nGraphRAG, time series predictive methods are enhanced by integrating these\\nvital relationships into the analysis framework, allowing for a more dynamic\\nunderstanding of the startup ecosystem in venture capital. Our experimental\\nresults demonstrate that our model significantly outperforms previous models in\\nstartup success predictions. To the best of our knowledge, our work is the\\nfirst application work of GraphRAG.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在风险投资(VC)行业,由于财务数据有限且需要主观收入预测,因此预测初创企业的成功与否非常具有挑战性。以往基于时间序列分析或深度学习的方法往往无法将竞争和合作等关键的公司间关系纳入其中,因而存在不足。针对这些问题,我们提出了一种使用 GrahphRAG 增强时间序列模型的新方法。通过将这些重要关系纳入分析框架,GraphRAG 增强了时间序列预测方法,从而能够更加动态地了解风险投资中的初创企业生态系统。实验结果表明,在创业成功预测方面,我们的模型明显优于之前的模型。据我们所知,我们的工作是 GraphRAG 的首次应用工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Startup Success Predictions in Venture Capital: A GraphRAG Augmented Multivariate Time Series Method
In the Venture Capital(VC) industry, predicting the success of startups is challenging due to limited financial data and the need for subjective revenue forecasts. Previous methods based on time series analysis or deep learning often fall short as they fail to incorporate crucial inter-company relationships such as competition and collaboration. Regarding the issues, we propose a novel approach using GrahphRAG augmented time series model. With GraphRAG, time series predictive methods are enhanced by integrating these vital relationships into the analysis framework, allowing for a more dynamic understanding of the startup ecosystem in venture capital. Our experimental results demonstrate that our model significantly outperforms previous models in startup success predictions. To the best of our knowledge, our work is the first application work of GraphRAG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1