{"title":"为改进乙醛检测而定制聚苯胺","authors":"Bhoomi Het Mavani, Alexander Penlidis","doi":"10.1002/mren.202400018","DOIUrl":null,"url":null,"abstract":"This study investigates polyaniline (PANI) for its sensing characteristics for detecting acetaldehyde. Pristine PANI is further modified in two ways to improve its sensing capabilities: 1) addition of a side chain (i.e., two methyl groups) to form poly (2,5‐dimethylaniline), 2) addition of small amounts of metal oxide dopant (In<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> in this case) to PANI. All the materials are evaluated for their sensing characteristics with respect to both sensitivity and selectivity. The sensitivity of PANI toward acetaldehyde is found to improve with both types of modification (i.e., poly (2,5‐dimethylaniline) and PANI doped with different wt.% of In<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>). However, upon evaluating selectivity toward acetaldehyde using binary and ternary gas mixtures, pristine PANI exhibited higher selectivity compared to its modified counterparts.","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Polyaniline for Improved Acetaldehyde Detection\",\"authors\":\"Bhoomi Het Mavani, Alexander Penlidis\",\"doi\":\"10.1002/mren.202400018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates polyaniline (PANI) for its sensing characteristics for detecting acetaldehyde. Pristine PANI is further modified in two ways to improve its sensing capabilities: 1) addition of a side chain (i.e., two methyl groups) to form poly (2,5‐dimethylaniline), 2) addition of small amounts of metal oxide dopant (In<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> in this case) to PANI. All the materials are evaluated for their sensing characteristics with respect to both sensitivity and selectivity. The sensitivity of PANI toward acetaldehyde is found to improve with both types of modification (i.e., poly (2,5‐dimethylaniline) and PANI doped with different wt.% of In<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>). However, upon evaluating selectivity toward acetaldehyde using binary and ternary gas mixtures, pristine PANI exhibited higher selectivity compared to its modified counterparts.\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mren.202400018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mren.202400018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了聚苯胺 (PANI) 检测乙醛的传感特性。原始 PANI 可通过两种方式进一步改性,以提高其传感能力:1) 添加侧链(即两个甲基)形成聚(2,5-二甲基苯胺),2) 在 PANI 中添加少量金属氧化物掺杂剂(本例中为 In2O3)。我们对所有材料的传感特性进行了评估,包括灵敏度和选择性。结果发现,PANI 对乙醛的灵敏度随着两种改性类型(即聚(2,5-二甲基苯胺)和掺杂不同重量百分比 In2O3 的 PANI)的增加而提高。不过,在使用二元和三元气体混合物评估对乙醛的选择性时,原始 PANI 的选择性高于其改性后的同类产品。
Tailoring Polyaniline for Improved Acetaldehyde Detection
This study investigates polyaniline (PANI) for its sensing characteristics for detecting acetaldehyde. Pristine PANI is further modified in two ways to improve its sensing capabilities: 1) addition of a side chain (i.e., two methyl groups) to form poly (2,5‐dimethylaniline), 2) addition of small amounts of metal oxide dopant (In2O3 in this case) to PANI. All the materials are evaluated for their sensing characteristics with respect to both sensitivity and selectivity. The sensitivity of PANI toward acetaldehyde is found to improve with both types of modification (i.e., poly (2,5‐dimethylaniline) and PANI doped with different wt.% of In2O3). However, upon evaluating selectivity toward acetaldehyde using binary and ternary gas mixtures, pristine PANI exhibited higher selectivity compared to its modified counterparts.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.