{"title":"因此,不能排气:深入探讨其他防爆方法","authors":"Michelle Murphy","doi":"10.1002/prs.12639","DOIUrl":null,"url":null,"abstract":"Current NFPA standards for managing combustible dust hazards require equipment with an explosion hazard to be protected from the effects of deflagration. These protections include deflagration venting in accordance with NFPA 68, Standard on Explosion Protection by Deflagration Venting, 2023 Edition, or oxidant concentration reduction, combustible concentration reduction, deflagration suppression, or deflagration pressure containment, via NFPA 69, Standard on Explosion Protection Systems, 2024 Edition. It makes sense to choose the simplest and most cost‐effective option based on the inherent design and risk of the operation. Implementation of any one of these protection methods requires an understanding of the method and all the associated requirements. While the basic methods are fairly straightforward, the associated requirements are often less understood. In this paper, the author will introduce the basic methods and take a deep dive into the associated requirements of each method of protection. Based on the author's experience in evaluating protection systems, common misunderstandings will be highlighted, for example, the margin of safety to apply and the operational limits required to be developed and documented for oxidant concentration reduction systems.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"So, you cannot vent: A deep dive into other explosion protection methods\",\"authors\":\"Michelle Murphy\",\"doi\":\"10.1002/prs.12639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current NFPA standards for managing combustible dust hazards require equipment with an explosion hazard to be protected from the effects of deflagration. These protections include deflagration venting in accordance with NFPA 68, Standard on Explosion Protection by Deflagration Venting, 2023 Edition, or oxidant concentration reduction, combustible concentration reduction, deflagration suppression, or deflagration pressure containment, via NFPA 69, Standard on Explosion Protection Systems, 2024 Edition. It makes sense to choose the simplest and most cost‐effective option based on the inherent design and risk of the operation. Implementation of any one of these protection methods requires an understanding of the method and all the associated requirements. While the basic methods are fairly straightforward, the associated requirements are often less understood. In this paper, the author will introduce the basic methods and take a deep dive into the associated requirements of each method of protection. Based on the author's experience in evaluating protection systems, common misunderstandings will be highlighted, for example, the margin of safety to apply and the operational limits required to be developed and documented for oxidant concentration reduction systems.\",\"PeriodicalId\":20680,\"journal\":{\"name\":\"Process Safety Progress\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prs.12639\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prs.12639","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
So, you cannot vent: A deep dive into other explosion protection methods
Current NFPA standards for managing combustible dust hazards require equipment with an explosion hazard to be protected from the effects of deflagration. These protections include deflagration venting in accordance with NFPA 68, Standard on Explosion Protection by Deflagration Venting, 2023 Edition, or oxidant concentration reduction, combustible concentration reduction, deflagration suppression, or deflagration pressure containment, via NFPA 69, Standard on Explosion Protection Systems, 2024 Edition. It makes sense to choose the simplest and most cost‐effective option based on the inherent design and risk of the operation. Implementation of any one of these protection methods requires an understanding of the method and all the associated requirements. While the basic methods are fairly straightforward, the associated requirements are often less understood. In this paper, the author will introduce the basic methods and take a deep dive into the associated requirements of each method of protection. Based on the author's experience in evaluating protection systems, common misunderstandings will be highlighted, for example, the margin of safety to apply and the operational limits required to be developed and documented for oxidant concentration reduction systems.
期刊介绍:
Process Safety Progress covers process safety for engineering professionals. It addresses such topics as incident investigations/case histories, hazardous chemicals management, hazardous leaks prevention, risk assessment, process hazards evaluation, industrial hygiene, fire and explosion analysis, preventive maintenance, vapor cloud dispersion, and regulatory compliance, training, education, and other areas in process safety and loss prevention, including emerging concerns like plant and/or process security. Papers from the annual Loss Prevention Symposium and other AIChE safety conferences are automatically considered for publication, but unsolicited papers, particularly those addressing process safety issues in emerging technologies and industries are encouraged and evaluated equally.