Haibao Tang, Wenqian Kong, Pheonah Nabukalu, Johnathan S. Lomas, Michel Moser, Jisen Zhang, Mengwei Jiang, Xingtan Zhang, Andrew H. Paterson, Won Cheol Yim
{"title":"GRABSEEDS:通过图像分析提取植物器官特征","authors":"Haibao Tang, Wenqian Kong, Pheonah Nabukalu, Johnathan S. Lomas, Michel Moser, Jisen Zhang, Mengwei Jiang, Xingtan Zhang, Andrew H. Paterson, Won Cheol Yim","doi":"10.1186/s13007-024-01268-2","DOIUrl":null,"url":null,"abstract":"Phenotyping of plant traits presents a significant bottleneck in Quantitative Trait Loci (QTL) mapping and genome-wide association studies (GWAS). Computerized phenotyping using digital images promises rapid, robust, and reproducible measurements of dimension, shape, and color traits of plant organs, including grain, leaf, and floral traits. We introduce GRABSEEDS, which is specifically tailored to extract a comprehensive set of features from plant images based on state-of-the-art computer vision and deep learning methods. This command-line enabled tool, which is adept at managing varying light conditions, background disturbances, and overlapping objects, uses digital images to measure plant organ characteristics accurately and efficiently. GRABSEED has advanced features including label recognition and color correction in a batch setting. GRABSEEDS streamlines the plant phenotyping process and is effective in a variety of seed, floral and leaf trait studies for association with agronomic traits and stress conditions. Source code and documentations for GRABSEEDS are available at: https://github.com/tanghaibao/jcvi/wiki/GRABSEEDS .","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GRABSEEDS: extraction of plant organ traits through image analysis\",\"authors\":\"Haibao Tang, Wenqian Kong, Pheonah Nabukalu, Johnathan S. Lomas, Michel Moser, Jisen Zhang, Mengwei Jiang, Xingtan Zhang, Andrew H. Paterson, Won Cheol Yim\",\"doi\":\"10.1186/s13007-024-01268-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenotyping of plant traits presents a significant bottleneck in Quantitative Trait Loci (QTL) mapping and genome-wide association studies (GWAS). Computerized phenotyping using digital images promises rapid, robust, and reproducible measurements of dimension, shape, and color traits of plant organs, including grain, leaf, and floral traits. We introduce GRABSEEDS, which is specifically tailored to extract a comprehensive set of features from plant images based on state-of-the-art computer vision and deep learning methods. This command-line enabled tool, which is adept at managing varying light conditions, background disturbances, and overlapping objects, uses digital images to measure plant organ characteristics accurately and efficiently. GRABSEED has advanced features including label recognition and color correction in a batch setting. GRABSEEDS streamlines the plant phenotyping process and is effective in a variety of seed, floral and leaf trait studies for association with agronomic traits and stress conditions. Source code and documentations for GRABSEEDS are available at: https://github.com/tanghaibao/jcvi/wiki/GRABSEEDS .\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01268-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01268-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
GRABSEEDS: extraction of plant organ traits through image analysis
Phenotyping of plant traits presents a significant bottleneck in Quantitative Trait Loci (QTL) mapping and genome-wide association studies (GWAS). Computerized phenotyping using digital images promises rapid, robust, and reproducible measurements of dimension, shape, and color traits of plant organs, including grain, leaf, and floral traits. We introduce GRABSEEDS, which is specifically tailored to extract a comprehensive set of features from plant images based on state-of-the-art computer vision and deep learning methods. This command-line enabled tool, which is adept at managing varying light conditions, background disturbances, and overlapping objects, uses digital images to measure plant organ characteristics accurately and efficiently. GRABSEED has advanced features including label recognition and color correction in a batch setting. GRABSEEDS streamlines the plant phenotyping process and is effective in a variety of seed, floral and leaf trait studies for association with agronomic traits and stress conditions. Source code and documentations for GRABSEEDS are available at: https://github.com/tanghaibao/jcvi/wiki/GRABSEEDS .
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.