Shouzheng Jiao
(, ), Peng Cheng
(, ), Hua Lai
(, ), Zhongjun Cheng
(, ), Yuyan Liu
(, ), Lei Jiang
(, )
{"title":"用于辨别液体的微凹槽结构类液体表面","authors":"Shouzheng Jiao \n (, ), Peng Cheng \n (, ), Hua Lai \n (, ), Zhongjun Cheng \n (, ), Yuyan Liu \n (, ), Lei Jiang \n (, )","doi":"10.1007/s40843-024-3054-9","DOIUrl":null,"url":null,"abstract":"<div><p>Discriminating between different liquids using surfaces with special wettability holds significant implications for both fundamental research and practical applications. However, current differentiation surfaces still struggle with challenges such as complex microstructure design, a limited detection range, and poor stability. In this study, we present a new platform for droplet discrimination achieved through a combination of groove structures and a liquid-like polydimethylsiloxane (PDMS) brushes coating. The PDMS brushes coating exhibits excellent stability and low adhesion across a wide range of liquids with surface tensions ranging from 27.5 to 72.8 mN/m, while the groove structure provides distinct energy barriers for droplet sliding. Consequently, liquids with varying surface tensions can be effectively discriminated, as evidenced by the increased sliding angles (SAs) observed as liquids with lower surface tension moving across the groove. Furthermore, we utilized a three dimensional (3D) model of the droplet developed using Surface Evolver, and conducted energy variation calculations during droplet sliding across the groove to analyze the SA differences among liquids with different surface tensions. Additionally, we proposed two simple differentiation platforms that successfully demonstrated effective droplet discrimination. This work introduces a novel strategy for droplet discrimination, offering innovative ideas for the design of functional surfaces. These findings may potentially be applied in other fields involving droplet manipulation, such as droplet-based microchemical reactions and bio-detection.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3719 - 3726"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microgroove-structured liquid-like surface for liquid discrimination\",\"authors\":\"Shouzheng Jiao \\n (, ), Peng Cheng \\n (, ), Hua Lai \\n (, ), Zhongjun Cheng \\n (, ), Yuyan Liu \\n (, ), Lei Jiang \\n (, )\",\"doi\":\"10.1007/s40843-024-3054-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Discriminating between different liquids using surfaces with special wettability holds significant implications for both fundamental research and practical applications. However, current differentiation surfaces still struggle with challenges such as complex microstructure design, a limited detection range, and poor stability. In this study, we present a new platform for droplet discrimination achieved through a combination of groove structures and a liquid-like polydimethylsiloxane (PDMS) brushes coating. The PDMS brushes coating exhibits excellent stability and low adhesion across a wide range of liquids with surface tensions ranging from 27.5 to 72.8 mN/m, while the groove structure provides distinct energy barriers for droplet sliding. Consequently, liquids with varying surface tensions can be effectively discriminated, as evidenced by the increased sliding angles (SAs) observed as liquids with lower surface tension moving across the groove. Furthermore, we utilized a three dimensional (3D) model of the droplet developed using Surface Evolver, and conducted energy variation calculations during droplet sliding across the groove to analyze the SA differences among liquids with different surface tensions. Additionally, we proposed two simple differentiation platforms that successfully demonstrated effective droplet discrimination. This work introduces a novel strategy for droplet discrimination, offering innovative ideas for the design of functional surfaces. These findings may potentially be applied in other fields involving droplet manipulation, such as droplet-based microchemical reactions and bio-detection.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 11\",\"pages\":\"3719 - 3726\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3054-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3054-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microgroove-structured liquid-like surface for liquid discrimination
Discriminating between different liquids using surfaces with special wettability holds significant implications for both fundamental research and practical applications. However, current differentiation surfaces still struggle with challenges such as complex microstructure design, a limited detection range, and poor stability. In this study, we present a new platform for droplet discrimination achieved through a combination of groove structures and a liquid-like polydimethylsiloxane (PDMS) brushes coating. The PDMS brushes coating exhibits excellent stability and low adhesion across a wide range of liquids with surface tensions ranging from 27.5 to 72.8 mN/m, while the groove structure provides distinct energy barriers for droplet sliding. Consequently, liquids with varying surface tensions can be effectively discriminated, as evidenced by the increased sliding angles (SAs) observed as liquids with lower surface tension moving across the groove. Furthermore, we utilized a three dimensional (3D) model of the droplet developed using Surface Evolver, and conducted energy variation calculations during droplet sliding across the groove to analyze the SA differences among liquids with different surface tensions. Additionally, we proposed two simple differentiation platforms that successfully demonstrated effective droplet discrimination. This work introduces a novel strategy for droplet discrimination, offering innovative ideas for the design of functional surfaces. These findings may potentially be applied in other fields involving droplet manipulation, such as droplet-based microchemical reactions and bio-detection.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.