{"title":"通过铁电转换诱导相变实现 α-In2Se3 中的可逆电致色性","authors":"Zhongshen Luo, Qingyuan Wang, Runcang Feng, Shun Wang, Zhou Zhou, Yiqi Hu, Qiankun Li, Qingyu Yan, Zhijian Feng, Yanfei Hou, Tianhao Ying, Yuyan Weng, Liang Fang, Lu You","doi":"10.1007/s40843-024-3060-1","DOIUrl":null,"url":null,"abstract":"<p>Electrochromic materials change color or opacity when subjected to electrical stimuli, often through reversible chemical reactions or phase transitions. Their optical switch capabilities make them promising for applications like smart windows and glasses, thus garnering widespread attention in recent years. Van der Waals layered ferroelectric α-In<sub>2</sub>Se<sub>3</sub>, known for its rich polymorphs, is a promising candidate for exploring physical property modulation via phase transformations. However, the discovery of electrochromism in In<sub>2</sub>Se<sub>3</sub> has been impeded by similar optical constants among its polymorphs. Herein, we report the experimental observation of reversible electrochromism in α-In<sub>2</sub>Se<sub>3</sub> thin flakes accompanied by ferroelectric polarization switching. Microscopic structural characterizations reveal that the color change stems from a crystalline-to-amorphous phase transition. An improved Kramer-Kronig analysis was employed to quantify the change in optical constants of the flake. A disordered polarization switching model, inherent to the crystal symmetry of α-In<sub>2</sub>Se<sub>3</sub>, was proposed to explain the electrically driven amorphization. This work delivers distinct insight into the unique electrochromic behavior and unveils opportunities of relevant applications for the van der Waals layered ferroelectric.\n</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"23 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible electrochromism in α-In2Se3 through ferroelectric switching induced phase transition\",\"authors\":\"Zhongshen Luo, Qingyuan Wang, Runcang Feng, Shun Wang, Zhou Zhou, Yiqi Hu, Qiankun Li, Qingyu Yan, Zhijian Feng, Yanfei Hou, Tianhao Ying, Yuyan Weng, Liang Fang, Lu You\",\"doi\":\"10.1007/s40843-024-3060-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochromic materials change color or opacity when subjected to electrical stimuli, often through reversible chemical reactions or phase transitions. Their optical switch capabilities make them promising for applications like smart windows and glasses, thus garnering widespread attention in recent years. Van der Waals layered ferroelectric α-In<sub>2</sub>Se<sub>3</sub>, known for its rich polymorphs, is a promising candidate for exploring physical property modulation via phase transformations. However, the discovery of electrochromism in In<sub>2</sub>Se<sub>3</sub> has been impeded by similar optical constants among its polymorphs. Herein, we report the experimental observation of reversible electrochromism in α-In<sub>2</sub>Se<sub>3</sub> thin flakes accompanied by ferroelectric polarization switching. Microscopic structural characterizations reveal that the color change stems from a crystalline-to-amorphous phase transition. An improved Kramer-Kronig analysis was employed to quantify the change in optical constants of the flake. A disordered polarization switching model, inherent to the crystal symmetry of α-In<sub>2</sub>Se<sub>3</sub>, was proposed to explain the electrically driven amorphization. This work delivers distinct insight into the unique electrochromic behavior and unveils opportunities of relevant applications for the van der Waals layered ferroelectric.\\n</p>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40843-024-3060-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40843-024-3060-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Reversible electrochromism in α-In2Se3 through ferroelectric switching induced phase transition
Electrochromic materials change color or opacity when subjected to electrical stimuli, often through reversible chemical reactions or phase transitions. Their optical switch capabilities make them promising for applications like smart windows and glasses, thus garnering widespread attention in recent years. Van der Waals layered ferroelectric α-In2Se3, known for its rich polymorphs, is a promising candidate for exploring physical property modulation via phase transformations. However, the discovery of electrochromism in In2Se3 has been impeded by similar optical constants among its polymorphs. Herein, we report the experimental observation of reversible electrochromism in α-In2Se3 thin flakes accompanied by ferroelectric polarization switching. Microscopic structural characterizations reveal that the color change stems from a crystalline-to-amorphous phase transition. An improved Kramer-Kronig analysis was employed to quantify the change in optical constants of the flake. A disordered polarization switching model, inherent to the crystal symmetry of α-In2Se3, was proposed to explain the electrically driven amorphization. This work delivers distinct insight into the unique electrochromic behavior and unveils opportunities of relevant applications for the van der Waals layered ferroelectric.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.