Hongyang Jin
(, ), Ziyang Wang
(, ), Guangli Yu
(, ), Junchao Dong
(, ), Shuai Zhao
(, ), Fengchao Cui
(, ), Hao Zhang
(, ), Guolong Lu
(, ), Xiaoqin Zou
(, ), Zhiyong Chang
(, )
{"title":"可实现超低二氧化碳仿生预浓缩的定制沸石咪唑酸盐框架","authors":"Hongyang Jin \n (, ), Ziyang Wang \n (, ), Guangli Yu \n (, ), Junchao Dong \n (, ), Shuai Zhao \n (, ), Fengchao Cui \n (, ), Hao Zhang \n (, ), Guolong Lu \n (, ), Xiaoqin Zou \n (, ), Zhiyong Chang \n (, )","doi":"10.1007/s40843-024-3044-0","DOIUrl":null,"url":null,"abstract":"<div><p>Advancing our understanding of global climate, particularly in polar regions, requires accurate detection of carbon dioxide (CO<sub>2</sub>) in ice cores and deep sea environments. However, detecting trace levels of CO<sub>2</sub> in these areas presents significant challenges. We introduce a novel preconcentration approach using functionalized zeolitic imidazolate framework, ZIF-8(CN), for the detection of ultra-low CO<sub>2</sub>. ZIF-8(CN) has small pores (4.4 Å) and cyano groups (–CN), enabling highly selective adsorption of CO<sub>2</sub> (36.2 cm<sup>3</sup> g<sup>−1</sup>) over N<sub>2</sub> (1.6 cm<sup>3</sup> g<sup>−1</sup>) at 298 K. The mechanism involves unique –CN⋯CO<sub>2</sub>⋯–CN interactions within the pore structure. When cast into a film on an aluminum substrate, ZIF-8(CN) demonstrates exceptional CO<sub>2</sub> preconcentration capability (1 ppm in N<sub>2</sub>) with an extraordinary preconcentration factor of 748, outperforming traditional ZIF and zeolite materials. Additionally, a ZIF-8(CN) preconcentrator is designed and fabricated with bionic gas flow of fractal structure which optimizes the gas-film contact, and thus its performance is further improved by 115%.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3401 - 3407"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A customized zeolitic imidazolate framework enabling bionic preconcentration of ultralow CO2\",\"authors\":\"Hongyang Jin \\n (, ), Ziyang Wang \\n (, ), Guangli Yu \\n (, ), Junchao Dong \\n (, ), Shuai Zhao \\n (, ), Fengchao Cui \\n (, ), Hao Zhang \\n (, ), Guolong Lu \\n (, ), Xiaoqin Zou \\n (, ), Zhiyong Chang \\n (, )\",\"doi\":\"10.1007/s40843-024-3044-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advancing our understanding of global climate, particularly in polar regions, requires accurate detection of carbon dioxide (CO<sub>2</sub>) in ice cores and deep sea environments. However, detecting trace levels of CO<sub>2</sub> in these areas presents significant challenges. We introduce a novel preconcentration approach using functionalized zeolitic imidazolate framework, ZIF-8(CN), for the detection of ultra-low CO<sub>2</sub>. ZIF-8(CN) has small pores (4.4 Å) and cyano groups (–CN), enabling highly selective adsorption of CO<sub>2</sub> (36.2 cm<sup>3</sup> g<sup>−1</sup>) over N<sub>2</sub> (1.6 cm<sup>3</sup> g<sup>−1</sup>) at 298 K. The mechanism involves unique –CN⋯CO<sub>2</sub>⋯–CN interactions within the pore structure. When cast into a film on an aluminum substrate, ZIF-8(CN) demonstrates exceptional CO<sub>2</sub> preconcentration capability (1 ppm in N<sub>2</sub>) with an extraordinary preconcentration factor of 748, outperforming traditional ZIF and zeolite materials. Additionally, a ZIF-8(CN) preconcentrator is designed and fabricated with bionic gas flow of fractal structure which optimizes the gas-film contact, and thus its performance is further improved by 115%.</p></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 10\",\"pages\":\"3401 - 3407\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3044-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3044-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A customized zeolitic imidazolate framework enabling bionic preconcentration of ultralow CO2
Advancing our understanding of global climate, particularly in polar regions, requires accurate detection of carbon dioxide (CO2) in ice cores and deep sea environments. However, detecting trace levels of CO2 in these areas presents significant challenges. We introduce a novel preconcentration approach using functionalized zeolitic imidazolate framework, ZIF-8(CN), for the detection of ultra-low CO2. ZIF-8(CN) has small pores (4.4 Å) and cyano groups (–CN), enabling highly selective adsorption of CO2 (36.2 cm3 g−1) over N2 (1.6 cm3 g−1) at 298 K. The mechanism involves unique –CN⋯CO2⋯–CN interactions within the pore structure. When cast into a film on an aluminum substrate, ZIF-8(CN) demonstrates exceptional CO2 preconcentration capability (1 ppm in N2) with an extraordinary preconcentration factor of 748, outperforming traditional ZIF and zeolite materials. Additionally, a ZIF-8(CN) preconcentrator is designed and fabricated with bionic gas flow of fractal structure which optimizes the gas-film contact, and thus its performance is further improved by 115%.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.