用于高性能超导临界温度预测的晶体结构图神经网络

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-08-23 DOI:10.1007/s40843-024-3026-8
Jingzi Zhang  (, ), Chengquan Zhong  (, ), Xiaoting Lu  (, ), Jiakai Liu  (, ), Kailong Hu  (, ), Xi Lin  (, )
{"title":"用于高性能超导临界温度预测的晶体结构图神经网络","authors":"Jingzi Zhang \n (,&nbsp;),&nbsp;Chengquan Zhong \n (,&nbsp;),&nbsp;Xiaoting Lu \n (,&nbsp;),&nbsp;Jiakai Liu \n (,&nbsp;),&nbsp;Kailong Hu \n (,&nbsp;),&nbsp;Xi Lin \n (,&nbsp;)","doi":"10.1007/s40843-024-3026-8","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of machine learning methods to predict the superconducting critical temperature (<i>T</i><sub>c</sub>) traditionally necessitates manually constructing elemental features, which challenges both the provision of meaningful chemical insights and the accuracy of predictions. In this work, we introduced crystal structure graph neural networks to extract structure-based features for <i>T</i><sub>c</sub> prediction. Our results indicated that these structure-based models outperformed all previously reported models, achieving an impressive coefficient of determination (<i>R</i><sup>2</sup>) of 0.962 and a root mean square error (RMSE) of 6.192 K. From the existing Inorganic Crystal Structure Database (ICSD), our model successfully identified 76 potential high-temperature superconducting compounds with <i>T</i><sub>c</sub> ⩾ 77 K. Among these, Tl<sub>5</sub>Ba<sub>6</sub>Ca<sub>6</sub>Cu<sub>9</sub>O<sub>29</sub> and TlYBa<sub>2</sub>Cu<sub>2</sub>O<sub>7</sub> exhibit remarkably high <i>T</i><sub>c</sub> values of 108.4 and 101.8 K, respectively. This work provides a perspective on the structure-property relationship for reliable <i>T</i><sub>c</sub> prediction.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3253 - 3261"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure graph neural networks for high-performance superconducting critical temperature prediction\",\"authors\":\"Jingzi Zhang \\n (,&nbsp;),&nbsp;Chengquan Zhong \\n (,&nbsp;),&nbsp;Xiaoting Lu \\n (,&nbsp;),&nbsp;Jiakai Liu \\n (,&nbsp;),&nbsp;Kailong Hu \\n (,&nbsp;),&nbsp;Xi Lin \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3026-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of machine learning methods to predict the superconducting critical temperature (<i>T</i><sub>c</sub>) traditionally necessitates manually constructing elemental features, which challenges both the provision of meaningful chemical insights and the accuracy of predictions. In this work, we introduced crystal structure graph neural networks to extract structure-based features for <i>T</i><sub>c</sub> prediction. Our results indicated that these structure-based models outperformed all previously reported models, achieving an impressive coefficient of determination (<i>R</i><sup>2</sup>) of 0.962 and a root mean square error (RMSE) of 6.192 K. From the existing Inorganic Crystal Structure Database (ICSD), our model successfully identified 76 potential high-temperature superconducting compounds with <i>T</i><sub>c</sub> ⩾ 77 K. Among these, Tl<sub>5</sub>Ba<sub>6</sub>Ca<sub>6</sub>Cu<sub>9</sub>O<sub>29</sub> and TlYBa<sub>2</sub>Cu<sub>2</sub>O<sub>7</sub> exhibit remarkably high <i>T</i><sub>c</sub> values of 108.4 and 101.8 K, respectively. This work provides a perspective on the structure-property relationship for reliable <i>T</i><sub>c</sub> prediction.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 10\",\"pages\":\"3253 - 3261\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3026-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3026-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用机器学习方法预测超导临界温度(Tc)传统上需要手动构建元素特征,这对提供有意义的化学见解和预测的准确性都提出了挑战。在这项工作中,我们引入了晶体结构图神经网络,以提取基于结构的 Tc 预测特征。结果表明,这些基于结构的模型优于之前报道的所有模型,达到了令人印象深刻的 0.962 的决定系数(R2)和 6.192 K 的均方根误差(RMSE)。从现有的无机晶体结构数据库(ICSD)中,我们的模型成功鉴定出 76 种 Tc ⩾ 77 K 的潜在高温超导化合物,其中 Tl5Ba6Ca6Cu9O29 和 TlYBa2Cu2O7 的 Tc 值分别高达 108.4 K 和 101.8 K。这项工作为可靠预测 Tc 值提供了结构-性能关系的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal structure graph neural networks for high-performance superconducting critical temperature prediction

The utilization of machine learning methods to predict the superconducting critical temperature (Tc) traditionally necessitates manually constructing elemental features, which challenges both the provision of meaningful chemical insights and the accuracy of predictions. In this work, we introduced crystal structure graph neural networks to extract structure-based features for Tc prediction. Our results indicated that these structure-based models outperformed all previously reported models, achieving an impressive coefficient of determination (R2) of 0.962 and a root mean square error (RMSE) of 6.192 K. From the existing Inorganic Crystal Structure Database (ICSD), our model successfully identified 76 potential high-temperature superconducting compounds with Tc ⩾ 77 K. Among these, Tl5Ba6Ca6Cu9O29 and TlYBa2Cu2O7 exhibit remarkably high Tc values of 108.4 and 101.8 K, respectively. This work provides a perspective on the structure-property relationship for reliable Tc prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Reaction-based small-molecule fluorescent probes for endoplasmic reticulum- and mitochondria-targeted biosensing and bioimaging Promising graphdiyne-based nanomaterials for environmental pollutant control Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review Supramolecular glass: a new platform for ultralong phosphorescence Simultaneously achieving high sensitivity, low dark current and low detection limits in anti-perovskites towards X-ray detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1