{"title":"通过重离子碰撞实验探测致密核物质的状态方程","authors":"Peter Senger","doi":"10.3390/sym16091162","DOIUrl":null,"url":null,"abstract":"The investigation of the nuclear matter equation of state (EOS) beyond saturation density has been a fundamental goal of heavy ion collision experiments for more than 40 years. First constraints on the EOS of symmetric nuclear matter at high densities were extracted from heavy ion data measured at AGS and GSI. At GSI, symmetry energy has also been investigated in nuclear collisions. These results of laboratory measurements are complemented by the analysis of recent astrophysical observations regarding the mass and radius of neutron stars and gravitational waves from neutron star merger events. The research programs of upcoming laboratory experiments include the study of the EOS at neutron star core densities and will also shed light on the elementary degrees of freedom of dense QCD matter. The status of the CBM experiment at FAIR and the perspective regarding the studies of the EOS of symmetric and asymmetric dense nuclear matter will be presented.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Equation of State of Dense Nuclear Matter by Heavy Ion Collision Experiments\",\"authors\":\"Peter Senger\",\"doi\":\"10.3390/sym16091162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of the nuclear matter equation of state (EOS) beyond saturation density has been a fundamental goal of heavy ion collision experiments for more than 40 years. First constraints on the EOS of symmetric nuclear matter at high densities were extracted from heavy ion data measured at AGS and GSI. At GSI, symmetry energy has also been investigated in nuclear collisions. These results of laboratory measurements are complemented by the analysis of recent astrophysical observations regarding the mass and radius of neutron stars and gravitational waves from neutron star merger events. The research programs of upcoming laboratory experiments include the study of the EOS at neutron star core densities and will also shed light on the elementary degrees of freedom of dense QCD matter. The status of the CBM experiment at FAIR and the perspective regarding the studies of the EOS of symmetric and asymmetric dense nuclear matter will be presented.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probing the Equation of State of Dense Nuclear Matter by Heavy Ion Collision Experiments
The investigation of the nuclear matter equation of state (EOS) beyond saturation density has been a fundamental goal of heavy ion collision experiments for more than 40 years. First constraints on the EOS of symmetric nuclear matter at high densities were extracted from heavy ion data measured at AGS and GSI. At GSI, symmetry energy has also been investigated in nuclear collisions. These results of laboratory measurements are complemented by the analysis of recent astrophysical observations regarding the mass and radius of neutron stars and gravitational waves from neutron star merger events. The research programs of upcoming laboratory experiments include the study of the EOS at neutron star core densities and will also shed light on the elementary degrees of freedom of dense QCD matter. The status of the CBM experiment at FAIR and the perspective regarding the studies of the EOS of symmetric and asymmetric dense nuclear matter will be presented.