用于寻找分数边界问题多解的预测拉普拉斯分数幂级数法

Symmetry Pub Date : 2024-09-04 DOI:10.3390/sym16091152
Abedel-Karrem Alomari, Wael Mahmoud Mohammad Salameh, Mohammad Alaroud, Nedal Tahat
{"title":"用于寻找分数边界问题多解的预测拉普拉斯分数幂级数法","authors":"Abedel-Karrem Alomari, Wael Mahmoud Mohammad Salameh, Mohammad Alaroud, Nedal Tahat","doi":"10.3390/sym16091152","DOIUrl":null,"url":null,"abstract":"This research focuses on finding multiple solutions (MSs) to nonlinear fractional boundary value problems (BVPs) through a new development, namely the predictor Laplace fractional power series method. This method predicts the missing initial values by applying boundary or force conditions. This research provides a set of theorems necessary for deriving the recurrence relations to find the series terms. Several examples demonstrate the efficacy, convergence, and accuracy of the algorithm. Under Caputo’s definition of the fractional derivative with symmetric order, the obtained results are visualized numerically and graphically. The behavior of the generated solutions indicates that altering the fractional derivative parameters within their domain symmetrically changes these solutions, ultimately aligning them with the standard derivative. The results are compared with the homotopy analysis method and are presented in various figures and tables.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictor Laplace Fractional Power Series Method for Finding Multiple Solutions of Fractional Boundary Value Problems\",\"authors\":\"Abedel-Karrem Alomari, Wael Mahmoud Mohammad Salameh, Mohammad Alaroud, Nedal Tahat\",\"doi\":\"10.3390/sym16091152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on finding multiple solutions (MSs) to nonlinear fractional boundary value problems (BVPs) through a new development, namely the predictor Laplace fractional power series method. This method predicts the missing initial values by applying boundary or force conditions. This research provides a set of theorems necessary for deriving the recurrence relations to find the series terms. Several examples demonstrate the efficacy, convergence, and accuracy of the algorithm. Under Caputo’s definition of the fractional derivative with symmetric order, the obtained results are visualized numerically and graphically. The behavior of the generated solutions indicates that altering the fractional derivative parameters within their domain symmetrically changes these solutions, ultimately aligning them with the standard derivative. The results are compared with the homotopy analysis method and are presented in various figures and tables.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是通过一种新的发展方法,即预测拉普拉斯分数幂级数方法,找到非线性分数边界值问题(BVP)的多解(MS)。该方法通过应用边界条件或力条件来预测缺失的初始值。这项研究提供了一系列必要的定理,用于推导出查找序列项的递推关系。多个实例证明了该算法的有效性、收敛性和准确性。根据卡普托对对称阶分数导数的定义,所获得的结果可通过数值和图形直观地显示出来。生成解的行为表明,在其域内改变分数导数参数会对称地改变这些解,最终使其与标准导数一致。研究结果与同调分析方法进行了比较,并通过各种图表进行了展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictor Laplace Fractional Power Series Method for Finding Multiple Solutions of Fractional Boundary Value Problems
This research focuses on finding multiple solutions (MSs) to nonlinear fractional boundary value problems (BVPs) through a new development, namely the predictor Laplace fractional power series method. This method predicts the missing initial values by applying boundary or force conditions. This research provides a set of theorems necessary for deriving the recurrence relations to find the series terms. Several examples demonstrate the efficacy, convergence, and accuracy of the algorithm. Under Caputo’s definition of the fractional derivative with symmetric order, the obtained results are visualized numerically and graphically. The behavior of the generated solutions indicates that altering the fractional derivative parameters within their domain symmetrically changes these solutions, ultimately aligning them with the standard derivative. The results are compared with the homotopy analysis method and are presented in various figures and tables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Moran Walk with Resets The Optimization of Aviation Technologies and Design Strategies for a Carbon-Neutral Future A Channel-Sensing-Based Multipath Multihop Cooperative Transmission Mechanism for UE Aggregation in Asymmetric IoE Scenarios A New Multimodal Modification of the Skew Family of Distributions: Properties and Applications to Medical and Environmental Data Balance Controller Design for Inverted Pendulum Considering Detail Reward Function and Two-Phase Learning Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1