Wang Sun
(, ), Zhe Zhang
(, ), Zhen Zhang
(, ), Nisha He
(, ), Qiang Wei
(, ), Liu Feng
(, ), Zhenghao Wang
(, ), Jie Wu
(, ), Can Liu
(, ), Shiyu Fu
(, ), Yelin Hou
(, ), Gilles Sèbe, Guofu Zhou
(, )
{"title":"通过纤维素纳米晶和氧化石墨烯共稳定皮克林乳液实现光热相变材料微胶囊,用于太阳能和热能储存","authors":"Wang Sun \n (, ), Zhe Zhang \n (, ), Zhen Zhang \n (, ), Nisha He \n (, ), Qiang Wei \n (, ), Liu Feng \n (, ), Zhenghao Wang \n (, ), Jie Wu \n (, ), Can Liu \n (, ), Shiyu Fu \n (, ), Yelin Hou \n (, ), Gilles Sèbe, Guofu Zhou \n (, )","doi":"10.1007/s40843-024-3040-5","DOIUrl":null,"url":null,"abstract":"<div><p>Phase change materials (PCMs) have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions. However, their widespread application is restricted by leakage issues. Encapsulating PCMs within polymeric microcapsules is a promising strategy to prevent leakage and increase heat transfer area with matrices. Moreover, photothermal PCM microcapsules are particularly desirable for solar energy storage. Herein, we fabricated photothermal PCM microcapsules with melamine-formaldehyde resin (MF) as shell using cellulose nanocrystal (CNC) and graphene oxide (GO) co-stabilized Pickering emulsion droplets as templates. CNC displays outstanding Pickering emulsifying ability and can facilitate the fixation of GO at the oil-water interface, resulting in a stable CNC/GO co-stabilized PCM Pickering emulsion. A polydopamine (PDA) layer was coated <i>in-situ</i> on the emulsion droplets via oxidization self-polymerization of dopamine. Meanwhile, GO was reduced to reduced GO (rGO) due to the reducing ability of PDA. The outmost MF shell of the PCM microcapsules was formed <i>in-situ</i> through the polymerization and crosslinking of MF prepolymer. The resulted PCM@CNC/rGO/PDA/MF microcapsules exhibit uniform sizes in the micrometer range, excellent leakage-proof performance, high phase change enthalpy (175.4 J g<sup>−1</sup>) and PCM encapsulation content (84.2%). Moreover, the presence of rGO and PDA endows PCM@CNC/rGO/PDA/MF microcapsules with outstanding photothermal conversion performance. The temperature of PCM@CNC/rGO/PDA/MF microcapsule slurries (15wt.%) can reach 73°C after light irradiation at 1 W cm<sup>−2</sup>. Therefore, photothermal PCM@CNC/rGO/PDA/MF microcapsules are promising for solar energy harvesting, thermal energy storage, and release in various applications, such as energy-efficient buildings and smart textiles.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3225 - 3235"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermal phase change material microcapsules via cellulose nanocrystal and graphene oxide co-stabilized Pickering emulsion for solar and thermal energy storage\",\"authors\":\"Wang Sun \\n (, ), Zhe Zhang \\n (, ), Zhen Zhang \\n (, ), Nisha He \\n (, ), Qiang Wei \\n (, ), Liu Feng \\n (, ), Zhenghao Wang \\n (, ), Jie Wu \\n (, ), Can Liu \\n (, ), Shiyu Fu \\n (, ), Yelin Hou \\n (, ), Gilles Sèbe, Guofu Zhou \\n (, )\",\"doi\":\"10.1007/s40843-024-3040-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phase change materials (PCMs) have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions. However, their widespread application is restricted by leakage issues. Encapsulating PCMs within polymeric microcapsules is a promising strategy to prevent leakage and increase heat transfer area with matrices. Moreover, photothermal PCM microcapsules are particularly desirable for solar energy storage. Herein, we fabricated photothermal PCM microcapsules with melamine-formaldehyde resin (MF) as shell using cellulose nanocrystal (CNC) and graphene oxide (GO) co-stabilized Pickering emulsion droplets as templates. CNC displays outstanding Pickering emulsifying ability and can facilitate the fixation of GO at the oil-water interface, resulting in a stable CNC/GO co-stabilized PCM Pickering emulsion. A polydopamine (PDA) layer was coated <i>in-situ</i> on the emulsion droplets via oxidization self-polymerization of dopamine. Meanwhile, GO was reduced to reduced GO (rGO) due to the reducing ability of PDA. The outmost MF shell of the PCM microcapsules was formed <i>in-situ</i> through the polymerization and crosslinking of MF prepolymer. The resulted PCM@CNC/rGO/PDA/MF microcapsules exhibit uniform sizes in the micrometer range, excellent leakage-proof performance, high phase change enthalpy (175.4 J g<sup>−1</sup>) and PCM encapsulation content (84.2%). Moreover, the presence of rGO and PDA endows PCM@CNC/rGO/PDA/MF microcapsules with outstanding photothermal conversion performance. The temperature of PCM@CNC/rGO/PDA/MF microcapsule slurries (15wt.%) can reach 73°C after light irradiation at 1 W cm<sup>−2</sup>. Therefore, photothermal PCM@CNC/rGO/PDA/MF microcapsules are promising for solar energy harvesting, thermal energy storage, and release in various applications, such as energy-efficient buildings and smart textiles.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 10\",\"pages\":\"3225 - 3235\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3040-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3040-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photothermal phase change material microcapsules via cellulose nanocrystal and graphene oxide co-stabilized Pickering emulsion for solar and thermal energy storage
Phase change materials (PCMs) have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions. However, their widespread application is restricted by leakage issues. Encapsulating PCMs within polymeric microcapsules is a promising strategy to prevent leakage and increase heat transfer area with matrices. Moreover, photothermal PCM microcapsules are particularly desirable for solar energy storage. Herein, we fabricated photothermal PCM microcapsules with melamine-formaldehyde resin (MF) as shell using cellulose nanocrystal (CNC) and graphene oxide (GO) co-stabilized Pickering emulsion droplets as templates. CNC displays outstanding Pickering emulsifying ability and can facilitate the fixation of GO at the oil-water interface, resulting in a stable CNC/GO co-stabilized PCM Pickering emulsion. A polydopamine (PDA) layer was coated in-situ on the emulsion droplets via oxidization self-polymerization of dopamine. Meanwhile, GO was reduced to reduced GO (rGO) due to the reducing ability of PDA. The outmost MF shell of the PCM microcapsules was formed in-situ through the polymerization and crosslinking of MF prepolymer. The resulted PCM@CNC/rGO/PDA/MF microcapsules exhibit uniform sizes in the micrometer range, excellent leakage-proof performance, high phase change enthalpy (175.4 J g−1) and PCM encapsulation content (84.2%). Moreover, the presence of rGO and PDA endows PCM@CNC/rGO/PDA/MF microcapsules with outstanding photothermal conversion performance. The temperature of PCM@CNC/rGO/PDA/MF microcapsule slurries (15wt.%) can reach 73°C after light irradiation at 1 W cm−2. Therefore, photothermal PCM@CNC/rGO/PDA/MF microcapsules are promising for solar energy harvesting, thermal energy storage, and release in various applications, such as energy-efficient buildings and smart textiles.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.