通过结构和属性调和防止结构中毒攻击的图增强技术

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Machine Learning and Cybernetics Pub Date : 2024-09-11 DOI:10.1007/s13042-024-02380-4
Yumeng Dai, Yifan Shao, Chenxu Wang, Xiaohong Guan
{"title":"通过结构和属性调和防止结构中毒攻击的图增强技术","authors":"Yumeng Dai, Yifan Shao, Chenxu Wang, Xiaohong Guan","doi":"10.1007/s13042-024-02380-4","DOIUrl":null,"url":null,"abstract":"<p>Recent years have witnessed the great success of graph neural networks (GNNs) in various graph data mining tasks. However, studies demonstrate that GNNs are vulnerable to imperceptible structural perturbations. Carefully crafted perturbations of few edges can significantly degrade the performance of GNNs. Many useful defense methods have been developed to eliminate the impacts of adversarial edges. However, existing approaches ignore the mutual corroboration effects of structures and attributes, which can be used for graph augmentation. This paper presents GAF, a novel graph Augmentation framework defending GNNs against structural poisoning attacks via structure and attribute reconciliation. GAF first constructs two auxiliary graphs, including an attributive neighborhood graph and a structural neighborhood graph, to augment the original one. We propose a novel graph purification scheme to prune irrelevant edges and assign the rest edges with different weights based on both node attributes and graph structures. This significantly mitigates the inconsistency between structural and attributive data, reducing the impacts of adversarial and noisy edges. Then, a joint graph convolutional network (GCN) model is developed to encode the three graphs for representation learning. Experimental results show that GAF outperforms state-of-the-art approaches against various adversarial attacks and exhibits great superiority for attacks with high perturbation rates. Source code is available at: https://github.com/shaoyf9/GAF.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph augmentation against structural poisoning attacks via structure and attribute reconciliation\",\"authors\":\"Yumeng Dai, Yifan Shao, Chenxu Wang, Xiaohong Guan\",\"doi\":\"10.1007/s13042-024-02380-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent years have witnessed the great success of graph neural networks (GNNs) in various graph data mining tasks. However, studies demonstrate that GNNs are vulnerable to imperceptible structural perturbations. Carefully crafted perturbations of few edges can significantly degrade the performance of GNNs. Many useful defense methods have been developed to eliminate the impacts of adversarial edges. However, existing approaches ignore the mutual corroboration effects of structures and attributes, which can be used for graph augmentation. This paper presents GAF, a novel graph Augmentation framework defending GNNs against structural poisoning attacks via structure and attribute reconciliation. GAF first constructs two auxiliary graphs, including an attributive neighborhood graph and a structural neighborhood graph, to augment the original one. We propose a novel graph purification scheme to prune irrelevant edges and assign the rest edges with different weights based on both node attributes and graph structures. This significantly mitigates the inconsistency between structural and attributive data, reducing the impacts of adversarial and noisy edges. Then, a joint graph convolutional network (GCN) model is developed to encode the three graphs for representation learning. Experimental results show that GAF outperforms state-of-the-art approaches against various adversarial attacks and exhibits great superiority for attacks with high perturbation rates. Source code is available at: https://github.com/shaoyf9/GAF.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02380-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02380-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,图神经网络(GNN)在各种图数据挖掘任务中取得了巨大成功。然而,研究表明,图神经网络很容易受到不易察觉的结构扰动的影响。精心设计的少量边缘扰动会显著降低图神经网络的性能。目前已开发出许多有用的防御方法来消除对抗性边缘的影响。然而,现有方法忽略了结构和属性的相互印证效应,而这些效应可用于图增强。本文介绍了一种新型图增强框架 GAF,即通过结构和属性调和来防御 GNN 的结构中毒攻击。GAF 首先构建两个辅助图,包括属性邻域图和结构邻域图,以增强原始图。我们提出了一种新颖的图净化方案,根据节点属性和图结构剪除不相关的边,并为其余的边分配不同的权重。这大大缓解了结构数据和属性数据之间的不一致性,减少了对抗性边缘和噪声边缘的影响。然后,开发了一个联合图卷积网络(GCN)模型,对这三个图进行编码,用于表征学习。实验结果表明,GAF 在应对各种对抗性攻击时的表现优于最先进的方法,并且在应对高扰动率攻击时表现出极大的优势。源代码见:https://github.com/shaoyf9/GAF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph augmentation against structural poisoning attacks via structure and attribute reconciliation

Recent years have witnessed the great success of graph neural networks (GNNs) in various graph data mining tasks. However, studies demonstrate that GNNs are vulnerable to imperceptible structural perturbations. Carefully crafted perturbations of few edges can significantly degrade the performance of GNNs. Many useful defense methods have been developed to eliminate the impacts of adversarial edges. However, existing approaches ignore the mutual corroboration effects of structures and attributes, which can be used for graph augmentation. This paper presents GAF, a novel graph Augmentation framework defending GNNs against structural poisoning attacks via structure and attribute reconciliation. GAF first constructs two auxiliary graphs, including an attributive neighborhood graph and a structural neighborhood graph, to augment the original one. We propose a novel graph purification scheme to prune irrelevant edges and assign the rest edges with different weights based on both node attributes and graph structures. This significantly mitigates the inconsistency between structural and attributive data, reducing the impacts of adversarial and noisy edges. Then, a joint graph convolutional network (GCN) model is developed to encode the three graphs for representation learning. Experimental results show that GAF outperforms state-of-the-art approaches against various adversarial attacks and exhibits great superiority for attacks with high perturbation rates. Source code is available at: https://github.com/shaoyf9/GAF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
期刊最新文献
LSSMSD: defending against black-box DNN model stealing based on localized stochastic sensitivity CHNSCDA: circRNA-disease association prediction based on strongly correlated heterogeneous neighbor sampling Contextual feature fusion and refinement network for camouflaged object detection Scnet: shape-aware convolution with KFNN for point clouds completion Self-refined variational transformer for image-conditioned layout generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1