用于临床编码多标签分类的聚类自动机器学习(CAML)模型

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Machine Learning and Cybernetics Pub Date : 2024-09-03 DOI:10.1007/s13042-024-02349-3
Akram Mustafa, Mostafa Rahimi Azghadi
{"title":"用于临床编码多标签分类的聚类自动机器学习(CAML)模型","authors":"Akram Mustafa, Mostafa Rahimi Azghadi","doi":"10.1007/s13042-024-02349-3","DOIUrl":null,"url":null,"abstract":"<p>Clinical coding is a time-consuming task that involves manually identifying and classifying patients’ diseases. This task becomes even more challenging when classifying across multiple diagnoses and performing multi-label classification. Automated Machine Learning (AutoML) techniques can improve this classification process. However, no previous study has developed an AutoML-based approach for multi-label clinical coding. To address this gap, a novel approach, called Clustered Automated Machine Learning (CAML), is introduced in this paper. CAML utilizes the AutoML library Auto-Sklearn and cTAKES feature extraction method. CAML clusters binary diagnosis labels using Hamming distance and employs the AutoML library to select the best algorithm for each cluster. The effectiveness of CAML is evaluated by comparing its performance with that of the Auto-Sklearn model on five different datasets from the Medical Information Mart for Intensive Care (MIMIC III) database of reports. These datasets vary in size, label set, and related diseases. The results demonstrate that CAML outperforms Auto-Sklearn in terms of Micro F1-score and Weighted F1-score, with an overall improvement ratio of 35.15% and 40.56%, respectively. The CAML approach offers the potential to improve healthcare quality by facilitating more accurate diagnoses and treatment decisions, ultimately enhancing patient outcomes.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustered Automated Machine Learning (CAML) model for clinical coding multi-label classification\",\"authors\":\"Akram Mustafa, Mostafa Rahimi Azghadi\",\"doi\":\"10.1007/s13042-024-02349-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clinical coding is a time-consuming task that involves manually identifying and classifying patients’ diseases. This task becomes even more challenging when classifying across multiple diagnoses and performing multi-label classification. Automated Machine Learning (AutoML) techniques can improve this classification process. However, no previous study has developed an AutoML-based approach for multi-label clinical coding. To address this gap, a novel approach, called Clustered Automated Machine Learning (CAML), is introduced in this paper. CAML utilizes the AutoML library Auto-Sklearn and cTAKES feature extraction method. CAML clusters binary diagnosis labels using Hamming distance and employs the AutoML library to select the best algorithm for each cluster. The effectiveness of CAML is evaluated by comparing its performance with that of the Auto-Sklearn model on five different datasets from the Medical Information Mart for Intensive Care (MIMIC III) database of reports. These datasets vary in size, label set, and related diseases. The results demonstrate that CAML outperforms Auto-Sklearn in terms of Micro F1-score and Weighted F1-score, with an overall improvement ratio of 35.15% and 40.56%, respectively. The CAML approach offers the potential to improve healthcare quality by facilitating more accurate diagnoses and treatment decisions, ultimately enhancing patient outcomes.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02349-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02349-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

临床编码是一项耗时的工作,需要人工识别和分类病人的疾病。在对多种诊断进行分类和执行多标签分类时,这项任务变得更具挑战性。自动机器学习(AutoML)技术可以改善这一分类过程。然而,以前的研究还没有开发出基于 AutoML 的多标签临床编码方法。为了填补这一空白,本文介绍了一种名为聚类自动机器学习(CAML)的新方法。CAML 利用了 AutoML 库 Auto-Sklearn 和 cTAKES 特征提取方法。CAML 利用汉明距离对二元诊断标签进行聚类,并利用 AutoML 库为每个聚类选择最佳算法。通过在重症监护医学信息市场(MIMIC III)报告数据库的五个不同数据集上比较 CAML 与 Auto-Sklearn 模型的性能,评估了 CAML 的有效性。这些数据集的大小、标签集和相关疾病各不相同。结果表明,CAML 在 Micro F1-score 和 Weighted F1-score 方面优于 Auto-Sklearn,整体改进率分别为 35.15% 和 40.56%。CAML 方法可促进更准确的诊断和治疗决策,从而提高医疗质量,最终改善患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustered Automated Machine Learning (CAML) model for clinical coding multi-label classification

Clinical coding is a time-consuming task that involves manually identifying and classifying patients’ diseases. This task becomes even more challenging when classifying across multiple diagnoses and performing multi-label classification. Automated Machine Learning (AutoML) techniques can improve this classification process. However, no previous study has developed an AutoML-based approach for multi-label clinical coding. To address this gap, a novel approach, called Clustered Automated Machine Learning (CAML), is introduced in this paper. CAML utilizes the AutoML library Auto-Sklearn and cTAKES feature extraction method. CAML clusters binary diagnosis labels using Hamming distance and employs the AutoML library to select the best algorithm for each cluster. The effectiveness of CAML is evaluated by comparing its performance with that of the Auto-Sklearn model on five different datasets from the Medical Information Mart for Intensive Care (MIMIC III) database of reports. These datasets vary in size, label set, and related diseases. The results demonstrate that CAML outperforms Auto-Sklearn in terms of Micro F1-score and Weighted F1-score, with an overall improvement ratio of 35.15% and 40.56%, respectively. The CAML approach offers the potential to improve healthcare quality by facilitating more accurate diagnoses and treatment decisions, ultimately enhancing patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
期刊最新文献
LSSMSD: defending against black-box DNN model stealing based on localized stochastic sensitivity CHNSCDA: circRNA-disease association prediction based on strongly correlated heterogeneous neighbor sampling Contextual feature fusion and refinement network for camouflaged object detection Scnet: shape-aware convolution with KFNN for point clouds completion Self-refined variational transformer for image-conditioned layout generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1