{"title":"基于时空混合门控卷积的交通流预测方法","authors":"Ying Zhang, Songhao Yang, Hongchao Wang, Yongqiang Cheng, Jinyu Wang, Liping Cao, Ziying An","doi":"10.1007/s13042-024-02364-4","DOIUrl":null,"url":null,"abstract":"<p>Influenced by the urban road network, traffic flow has complex temporal and spatial correlation characteristics. Traffic flow forecasting is an important problem in the intelligent transportation system, which is related to the safety and stability of the transportation system. At present, many researchers ignore the research need for traffic flow forecasting beyond one hour. To address the issue of long-term traffic flow prediction, this paper proposes a traffic flow prediction model (HSTGCNN) based on a hybrid spatial–temporal gated convolution. Spatial–temporal attention mechanism and Gated convolution are the main components of HSTGCNN. The spatial–temporal attention mechanism can effectively obtain the spatial–temporal features of traffic flow, and gated convolution plays an important role in extracting longer-term features. The usage of dilated causal convolution effectively improves the long-term prediction ability of the model. HSTGCNN predicts the traffic conditions of 1 h, 1.5 h, and 2 h on two general traffic flow datasets. Experimental results show that the prediction accuracy of HSTGCNN is generally better than that of Temporal Graph Convolutional Network (T-GCN), Graph WaveNet, and other baselines.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"19 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A traffic flow forecasting method based on hybrid spatial–temporal gated convolution\",\"authors\":\"Ying Zhang, Songhao Yang, Hongchao Wang, Yongqiang Cheng, Jinyu Wang, Liping Cao, Ziying An\",\"doi\":\"10.1007/s13042-024-02364-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Influenced by the urban road network, traffic flow has complex temporal and spatial correlation characteristics. Traffic flow forecasting is an important problem in the intelligent transportation system, which is related to the safety and stability of the transportation system. At present, many researchers ignore the research need for traffic flow forecasting beyond one hour. To address the issue of long-term traffic flow prediction, this paper proposes a traffic flow prediction model (HSTGCNN) based on a hybrid spatial–temporal gated convolution. Spatial–temporal attention mechanism and Gated convolution are the main components of HSTGCNN. The spatial–temporal attention mechanism can effectively obtain the spatial–temporal features of traffic flow, and gated convolution plays an important role in extracting longer-term features. The usage of dilated causal convolution effectively improves the long-term prediction ability of the model. HSTGCNN predicts the traffic conditions of 1 h, 1.5 h, and 2 h on two general traffic flow datasets. Experimental results show that the prediction accuracy of HSTGCNN is generally better than that of Temporal Graph Convolutional Network (T-GCN), Graph WaveNet, and other baselines.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02364-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02364-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A traffic flow forecasting method based on hybrid spatial–temporal gated convolution
Influenced by the urban road network, traffic flow has complex temporal and spatial correlation characteristics. Traffic flow forecasting is an important problem in the intelligent transportation system, which is related to the safety and stability of the transportation system. At present, many researchers ignore the research need for traffic flow forecasting beyond one hour. To address the issue of long-term traffic flow prediction, this paper proposes a traffic flow prediction model (HSTGCNN) based on a hybrid spatial–temporal gated convolution. Spatial–temporal attention mechanism and Gated convolution are the main components of HSTGCNN. The spatial–temporal attention mechanism can effectively obtain the spatial–temporal features of traffic flow, and gated convolution plays an important role in extracting longer-term features. The usage of dilated causal convolution effectively improves the long-term prediction ability of the model. HSTGCNN predicts the traffic conditions of 1 h, 1.5 h, and 2 h on two general traffic flow datasets. Experimental results show that the prediction accuracy of HSTGCNN is generally better than that of Temporal Graph Convolutional Network (T-GCN), Graph WaveNet, and other baselines.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems