基于图神经网络的 SAT 求解器时间估算器

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Machine Learning and Cybernetics Pub Date : 2024-08-31 DOI:10.1007/s13042-024-02327-9
Jiawei Liu, Wenyi Xiao, Hongtao Cheng, Chuan Shi
{"title":"基于图神经网络的 SAT 求解器时间估算器","authors":"Jiawei Liu, Wenyi Xiao, Hongtao Cheng, Chuan Shi","doi":"10.1007/s13042-024-02327-9","DOIUrl":null,"url":null,"abstract":"<p>SAT-based formal verification is a systematic process to prove the correctness of computer hardware design based on formal specifications, providing an alternative to time-consuming simulations and ensuring design reliability and accuracy. Predicting the runtime of SAT solvers is important to effectively allocate verification resources and determine if the verification can be completed within time limits. Predicting SAT solver runtime is challenging due to variations in solving time across different solvers and dependence on problem complexity and solver mechanisms. Existing approaches rely on feature engineering and machine learning, but they have drawbacks in terms of expert knowledge requirements and time-consuming feature extraction. To address this, using graph neural networks (GNNs) for runtime prediction is considered, as they excel in capturing graph topology and relationships. However, directly applying existing GNNs to predict SAT solver runtime does not yield satisfactory results, as SAT solvers’ proving procedure is crucial. In this paper, we propose a novel model, TESS, that integrates the working mechanism of SAT solvers with graph neural networks (GNNs) for predicting solving time. The model incorporates a graph representation inspired by the CDCL paradigm, proposes adaptive aggregation for multilayer information and separate modules for conflict learning. Experimental results on multiple datasets validate the effectiveness, scalability, and robustness of our model, outperforming baselines in SAT solver runtime prediction.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph neural network based time estimator for SAT solver\",\"authors\":\"Jiawei Liu, Wenyi Xiao, Hongtao Cheng, Chuan Shi\",\"doi\":\"10.1007/s13042-024-02327-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>SAT-based formal verification is a systematic process to prove the correctness of computer hardware design based on formal specifications, providing an alternative to time-consuming simulations and ensuring design reliability and accuracy. Predicting the runtime of SAT solvers is important to effectively allocate verification resources and determine if the verification can be completed within time limits. Predicting SAT solver runtime is challenging due to variations in solving time across different solvers and dependence on problem complexity and solver mechanisms. Existing approaches rely on feature engineering and machine learning, but they have drawbacks in terms of expert knowledge requirements and time-consuming feature extraction. To address this, using graph neural networks (GNNs) for runtime prediction is considered, as they excel in capturing graph topology and relationships. However, directly applying existing GNNs to predict SAT solver runtime does not yield satisfactory results, as SAT solvers’ proving procedure is crucial. In this paper, we propose a novel model, TESS, that integrates the working mechanism of SAT solvers with graph neural networks (GNNs) for predicting solving time. The model incorporates a graph representation inspired by the CDCL paradigm, proposes adaptive aggregation for multilayer information and separate modules for conflict learning. Experimental results on multiple datasets validate the effectiveness, scalability, and robustness of our model, outperforming baselines in SAT solver runtime prediction.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02327-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02327-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于 SAT 的形式化验证是一种基于形式化规范证明计算机硬件设计正确性的系统过程,它提供了一种替代耗时模拟的方法,并确保了设计的可靠性和准确性。预测 SAT 求解器的运行时间对于有效分配验证资源和确定能否在规定时间内完成验证非常重要。由于不同求解器的求解时间存在差异,并且取决于问题的复杂性和求解器机制,因此预测 SAT 求解器的运行时间具有挑战性。现有方法依赖于特征工程和机器学习,但它们在专家知识要求和耗时的特征提取方面存在缺陷。为了解决这个问题,我们考虑使用图神经网络(GNN)进行运行时预测,因为它们在捕捉图拓扑和关系方面表现出色。然而,直接应用现有的图神经网络预测 SAT 解算器的运行时间并不能获得令人满意的结果,因为 SAT 解算器的证明过程至关重要。在本文中,我们提出了一种新型模型 TESS,它将 SAT 求解器的工作机制与图神经网络(GNN)相结合,用于预测求解时间。该模型结合了受 CDCL 范式启发的图表示法,提出了多层信息自适应聚合和冲突学习独立模块。在多个数据集上的实验结果验证了我们模型的有效性、可扩展性和鲁棒性,在 SAT 解算器运行时间预测方面优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph neural network based time estimator for SAT solver

SAT-based formal verification is a systematic process to prove the correctness of computer hardware design based on formal specifications, providing an alternative to time-consuming simulations and ensuring design reliability and accuracy. Predicting the runtime of SAT solvers is important to effectively allocate verification resources and determine if the verification can be completed within time limits. Predicting SAT solver runtime is challenging due to variations in solving time across different solvers and dependence on problem complexity and solver mechanisms. Existing approaches rely on feature engineering and machine learning, but they have drawbacks in terms of expert knowledge requirements and time-consuming feature extraction. To address this, using graph neural networks (GNNs) for runtime prediction is considered, as they excel in capturing graph topology and relationships. However, directly applying existing GNNs to predict SAT solver runtime does not yield satisfactory results, as SAT solvers’ proving procedure is crucial. In this paper, we propose a novel model, TESS, that integrates the working mechanism of SAT solvers with graph neural networks (GNNs) for predicting solving time. The model incorporates a graph representation inspired by the CDCL paradigm, proposes adaptive aggregation for multilayer information and separate modules for conflict learning. Experimental results on multiple datasets validate the effectiveness, scalability, and robustness of our model, outperforming baselines in SAT solver runtime prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
期刊最新文献
LSSMSD: defending against black-box DNN model stealing based on localized stochastic sensitivity CHNSCDA: circRNA-disease association prediction based on strongly correlated heterogeneous neighbor sampling Contextual feature fusion and refinement network for camouflaged object detection Scnet: shape-aware convolution with KFNN for point clouds completion Self-refined variational transformer for image-conditioned layout generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1