Daniel Bolaños-Martinez, Jose Luis Garrido, Maria Bermudez-Edo
{"title":"预测智慧村庄的过夜时间:背景信息的重要性","authors":"Daniel Bolaños-Martinez, Jose Luis Garrido, Maria Bermudez-Edo","doi":"10.1007/s13042-024-02337-7","DOIUrl":null,"url":null,"abstract":"<p>The tourism industry increasingly employs sensors and machine learning for tasks such as demand prediction and mobility forecasting. However, some challenges in data collection remain, especially with information privacy and resource management. We propose a vehicle classification model based on License Plate Recognition (LPR) sensor data, incorporating contextual datasets not explored in the existing literature to predict the number of nights a vehicle will stay in a mountain tourist area. We also study the importance of each dataset in the results. Our analysis utilizes data from four LPR cameras spanning 17 months. We compare different classification models optimized through ensemble techniques. Additionally, an ablation study assesses the impact of each dataset, with variables categorized by expert knowledge into seasonal, socio-economic or visit-related. Optimal dataset selection demonstrates a 22.2% reduction in processing time and an 80% decrease in the number of variables, with only a slight decrease of 0.01 in the Area Under the Curve (AUC) compared to using all available variables. This research provides information to develop tourism prediction models, guiding which datasets and calculated variables are the most important while balancing the processing time and AUC.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"270 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting overnights in smart villages: the importance of context information\",\"authors\":\"Daniel Bolaños-Martinez, Jose Luis Garrido, Maria Bermudez-Edo\",\"doi\":\"10.1007/s13042-024-02337-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tourism industry increasingly employs sensors and machine learning for tasks such as demand prediction and mobility forecasting. However, some challenges in data collection remain, especially with information privacy and resource management. We propose a vehicle classification model based on License Plate Recognition (LPR) sensor data, incorporating contextual datasets not explored in the existing literature to predict the number of nights a vehicle will stay in a mountain tourist area. We also study the importance of each dataset in the results. Our analysis utilizes data from four LPR cameras spanning 17 months. We compare different classification models optimized through ensemble techniques. Additionally, an ablation study assesses the impact of each dataset, with variables categorized by expert knowledge into seasonal, socio-economic or visit-related. Optimal dataset selection demonstrates a 22.2% reduction in processing time and an 80% decrease in the number of variables, with only a slight decrease of 0.01 in the Area Under the Curve (AUC) compared to using all available variables. This research provides information to develop tourism prediction models, guiding which datasets and calculated variables are the most important while balancing the processing time and AUC.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"270 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02337-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02337-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predicting overnights in smart villages: the importance of context information
The tourism industry increasingly employs sensors and machine learning for tasks such as demand prediction and mobility forecasting. However, some challenges in data collection remain, especially with information privacy and resource management. We propose a vehicle classification model based on License Plate Recognition (LPR) sensor data, incorporating contextual datasets not explored in the existing literature to predict the number of nights a vehicle will stay in a mountain tourist area. We also study the importance of each dataset in the results. Our analysis utilizes data from four LPR cameras spanning 17 months. We compare different classification models optimized through ensemble techniques. Additionally, an ablation study assesses the impact of each dataset, with variables categorized by expert knowledge into seasonal, socio-economic or visit-related. Optimal dataset selection demonstrates a 22.2% reduction in processing time and an 80% decrease in the number of variables, with only a slight decrease of 0.01 in the Area Under the Curve (AUC) compared to using all available variables. This research provides information to develop tourism prediction models, guiding which datasets and calculated variables are the most important while balancing the processing time and AUC.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems