{"title":"基于信息叠加和混合熵的随机配置网络建模方法","authors":"Aijun Yan, Kaicheng Hu, Dianhui Wang","doi":"10.1007/s13042-024-02320-2","DOIUrl":null,"url":null,"abstract":"<p>To improve the generalizability and robustness of stochastic configuration networks (SCNs), this paper proposes a robust modeling method based on information superposition and mixture correntropy. First, the mapping information of the (sigmoid) activation function and its derivative function is superimposed, and the hidden layer parameters are randomly assigned through a supervisory mechanism to improve the diversity of the hidden layer mapping. Second, mixture correntropy is used to construct a robust loss function, and different Gaussian kernels are used to measure the contribution of training samples to suppress the negative impact of data noise on the accuracy of the model. Finally, the performance of the proposed modeling method is tested on functional approximation, four benchmark datasets, and historical data from the municipal solid waste incineration process. The experimental results show that the modeling method proposed in this paper has advantages in terms of generalizability and robustness.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"47 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic configuration network modeling method based on information superposition and mixture correntropy\",\"authors\":\"Aijun Yan, Kaicheng Hu, Dianhui Wang\",\"doi\":\"10.1007/s13042-024-02320-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the generalizability and robustness of stochastic configuration networks (SCNs), this paper proposes a robust modeling method based on information superposition and mixture correntropy. First, the mapping information of the (sigmoid) activation function and its derivative function is superimposed, and the hidden layer parameters are randomly assigned through a supervisory mechanism to improve the diversity of the hidden layer mapping. Second, mixture correntropy is used to construct a robust loss function, and different Gaussian kernels are used to measure the contribution of training samples to suppress the negative impact of data noise on the accuracy of the model. Finally, the performance of the proposed modeling method is tested on functional approximation, four benchmark datasets, and historical data from the municipal solid waste incineration process. The experimental results show that the modeling method proposed in this paper has advantages in terms of generalizability and robustness.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02320-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02320-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Stochastic configuration network modeling method based on information superposition and mixture correntropy
To improve the generalizability and robustness of stochastic configuration networks (SCNs), this paper proposes a robust modeling method based on information superposition and mixture correntropy. First, the mapping information of the (sigmoid) activation function and its derivative function is superimposed, and the hidden layer parameters are randomly assigned through a supervisory mechanism to improve the diversity of the hidden layer mapping. Second, mixture correntropy is used to construct a robust loss function, and different Gaussian kernels are used to measure the contribution of training samples to suppress the negative impact of data noise on the accuracy of the model. Finally, the performance of the proposed modeling method is tested on functional approximation, four benchmark datasets, and historical data from the municipal solid waste incineration process. The experimental results show that the modeling method proposed in this paper has advantages in terms of generalizability and robustness.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems