{"title":"具有全局特征增强功能的多动态残差图卷积网络用于交通流量预测","authors":"Xiangdong Li, Xiang Yin, Xiaoling Huang, Weishu Liu, Shuai Zhang, Dongping Zhang","doi":"10.1007/s13042-024-02307-z","DOIUrl":null,"url":null,"abstract":"<p>The key to achieving an accurate and reliable traffic flow prediction lies in modeling the complex and dynamic correlations among sensors. However, existing studies ignore the fact that such correlations are influenced by multiple dynamic factors and the original sequence features of the traffic data, which limits the deep modeling of such correlations and leads to a biased understanding of such correlations. The extraction strategies for global features are less developed, which has degraded the reliability of the predictions. In this study, a novel multi-dynamic residual graph convolutional network with global feature enhancement is proposed to solve these problems and achieve an accurate and reliable traffic flow prediction. First, multiple graph generators are proposed, which fully preserve the original sequence features of the traffic data and enable layered depth-wise modeling of the dynamic correlations among sensors through a residual mechanism. Second, an output module is proposed to explore extraction strategies for global features, by employing a residual mechanism and parameter sharing strategy to maintain the consistency of the global features. Finally, a new layered network architecture is proposed, which not only leverages the advantages of both static and dynamic graphs, but also captures the spatiotemporal dependencies among sensors. The superiority of the proposed model has been verified through extensive experiments on two real-world datasets.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"8 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-dynamic residual graph convolutional network with global feature enhancement for traffic flow prediction\",\"authors\":\"Xiangdong Li, Xiang Yin, Xiaoling Huang, Weishu Liu, Shuai Zhang, Dongping Zhang\",\"doi\":\"10.1007/s13042-024-02307-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The key to achieving an accurate and reliable traffic flow prediction lies in modeling the complex and dynamic correlations among sensors. However, existing studies ignore the fact that such correlations are influenced by multiple dynamic factors and the original sequence features of the traffic data, which limits the deep modeling of such correlations and leads to a biased understanding of such correlations. The extraction strategies for global features are less developed, which has degraded the reliability of the predictions. In this study, a novel multi-dynamic residual graph convolutional network with global feature enhancement is proposed to solve these problems and achieve an accurate and reliable traffic flow prediction. First, multiple graph generators are proposed, which fully preserve the original sequence features of the traffic data and enable layered depth-wise modeling of the dynamic correlations among sensors through a residual mechanism. Second, an output module is proposed to explore extraction strategies for global features, by employing a residual mechanism and parameter sharing strategy to maintain the consistency of the global features. Finally, a new layered network architecture is proposed, which not only leverages the advantages of both static and dynamic graphs, but also captures the spatiotemporal dependencies among sensors. The superiority of the proposed model has been verified through extensive experiments on two real-world datasets.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02307-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02307-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-dynamic residual graph convolutional network with global feature enhancement for traffic flow prediction
The key to achieving an accurate and reliable traffic flow prediction lies in modeling the complex and dynamic correlations among sensors. However, existing studies ignore the fact that such correlations are influenced by multiple dynamic factors and the original sequence features of the traffic data, which limits the deep modeling of such correlations and leads to a biased understanding of such correlations. The extraction strategies for global features are less developed, which has degraded the reliability of the predictions. In this study, a novel multi-dynamic residual graph convolutional network with global feature enhancement is proposed to solve these problems and achieve an accurate and reliable traffic flow prediction. First, multiple graph generators are proposed, which fully preserve the original sequence features of the traffic data and enable layered depth-wise modeling of the dynamic correlations among sensors through a residual mechanism. Second, an output module is proposed to explore extraction strategies for global features, by employing a residual mechanism and parameter sharing strategy to maintain the consistency of the global features. Finally, a new layered network architecture is proposed, which not only leverages the advantages of both static and dynamic graphs, but also captures the spatiotemporal dependencies among sensors. The superiority of the proposed model has been verified through extensive experiments on two real-world datasets.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems