Allan Augusto Kokkonen, Samuel Schemmer, Rian Brondani, João Francisco Fornari, Daniéle Gonçalves Papalia, Elena Baldi, Moreno Toselli, Jean Michel Moura-Bueno, Arcângelo Loss, Tadeu Luis Tiecher, Gustavo Brunetto
{"title":"用葡萄渣残渣改良的葡萄园土壤中的碳和氮储量","authors":"Allan Augusto Kokkonen, Samuel Schemmer, Rian Brondani, João Francisco Fornari, Daniéle Gonçalves Papalia, Elena Baldi, Moreno Toselli, Jean Michel Moura-Bueno, Arcângelo Loss, Tadeu Luis Tiecher, Gustavo Brunetto","doi":"10.3390/agronomy14092055","DOIUrl":null,"url":null,"abstract":"Fruit crops under soil conservational management might sequester carbon (C) in soils and mitigate greenhouse gases emissions. Using grape pomace residues as soil amendment holds promise for sustainable viticulture. However, its actual capability to increase soil organic carbon (SOC) and nitrogen (N) is unknown, especially in subtropical climates. This research aims to investigate whether grape pomace compost and vermicompost can increase SOC, total N (TN), and C and N stocks in subtropical vineyards. Two vineyards located in Veranópolis, in South Brazil, one cultivated with ‘Isabella’ and the other with ‘Chardonnay’ varieties, were annually amended with these residues for three years. We quantified SOC and TN in each condition in different soil layers, as well as C and N content in two different granulometric fractions: mineral-associated organic matter (MAOM) and particulate organic matter (POM). C and N stocks were also calculated. Despite potential benefits, neither treatment enhanced SOC, its fractions, or C stocks. In fact, vermicompost was rapidly mineralized and depleted SOC and its fractions in the 0.0 to 0.05 m layers of the ‘Isabella’ vineyard. Our findings indicate that the tested grape pomace residues were unable to promote C sequestration in subtropical vineyards after a three-year period.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon and Nitrogen Stocks in Vineyard Soils Amended with Grape Pomace Residues\",\"authors\":\"Allan Augusto Kokkonen, Samuel Schemmer, Rian Brondani, João Francisco Fornari, Daniéle Gonçalves Papalia, Elena Baldi, Moreno Toselli, Jean Michel Moura-Bueno, Arcângelo Loss, Tadeu Luis Tiecher, Gustavo Brunetto\",\"doi\":\"10.3390/agronomy14092055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fruit crops under soil conservational management might sequester carbon (C) in soils and mitigate greenhouse gases emissions. Using grape pomace residues as soil amendment holds promise for sustainable viticulture. However, its actual capability to increase soil organic carbon (SOC) and nitrogen (N) is unknown, especially in subtropical climates. This research aims to investigate whether grape pomace compost and vermicompost can increase SOC, total N (TN), and C and N stocks in subtropical vineyards. Two vineyards located in Veranópolis, in South Brazil, one cultivated with ‘Isabella’ and the other with ‘Chardonnay’ varieties, were annually amended with these residues for three years. We quantified SOC and TN in each condition in different soil layers, as well as C and N content in two different granulometric fractions: mineral-associated organic matter (MAOM) and particulate organic matter (POM). C and N stocks were also calculated. Despite potential benefits, neither treatment enhanced SOC, its fractions, or C stocks. In fact, vermicompost was rapidly mineralized and depleted SOC and its fractions in the 0.0 to 0.05 m layers of the ‘Isabella’ vineyard. Our findings indicate that the tested grape pomace residues were unable to promote C sequestration in subtropical vineyards after a three-year period.\",\"PeriodicalId\":7601,\"journal\":{\"name\":\"Agronomy\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy14092055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agronomy14092055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon and Nitrogen Stocks in Vineyard Soils Amended with Grape Pomace Residues
Fruit crops under soil conservational management might sequester carbon (C) in soils and mitigate greenhouse gases emissions. Using grape pomace residues as soil amendment holds promise for sustainable viticulture. However, its actual capability to increase soil organic carbon (SOC) and nitrogen (N) is unknown, especially in subtropical climates. This research aims to investigate whether grape pomace compost and vermicompost can increase SOC, total N (TN), and C and N stocks in subtropical vineyards. Two vineyards located in Veranópolis, in South Brazil, one cultivated with ‘Isabella’ and the other with ‘Chardonnay’ varieties, were annually amended with these residues for three years. We quantified SOC and TN in each condition in different soil layers, as well as C and N content in two different granulometric fractions: mineral-associated organic matter (MAOM) and particulate organic matter (POM). C and N stocks were also calculated. Despite potential benefits, neither treatment enhanced SOC, its fractions, or C stocks. In fact, vermicompost was rapidly mineralized and depleted SOC and its fractions in the 0.0 to 0.05 m layers of the ‘Isabella’ vineyard. Our findings indicate that the tested grape pomace residues were unable to promote C sequestration in subtropical vineyards after a three-year period.