{"title":"施氮是否能提高春小麦的氮利用效率?","authors":"Aixia Xu, Yafei Chen, Xuexue Wei, Zechariah Effah, Lingling Li, Junhong Xie, Chang Liu, Sumera Anwar","doi":"10.3390/agronomy14092049","DOIUrl":null,"url":null,"abstract":"To investigate the effects and mechanism of prolonged inorganic nitrogen (N) fertilization on the N-use efficiency of spring wheat (Triticum aestivum L.), a long-term study initiated in 2003 was conducted. The study analyzed how N fertilization affects dry matter translocation, N translocation, soil NO3-N, and N-use efficiency. Five different N-fertilizer rate treatments were tested: N0, N52.5, N105, N157.5, and N210, corresponding to annual N fertilizer doses of 0, 52.5, 105.0, 157.5, and 210.0 kg N ha−1, respectively. Results showed that increasing N-fertilizer rates significantly enhanced the two-year average dry matter accumulation amount (DMA) at maturity by 22.97–56.25% and pre-flowering crop growth rate (CGR) by 17.11–92.85%, with no significant increase beyond 105 kg N ha−1. However, no significant correlation was observed between the dry matter translocation efficiency (DTE) and wheat grain yield. Both insufficient and excessive N applications resulted in an imbalanced N distribution favoring vegetative growth over reproductive growth, thus negatively impacting N-use efficiency. At maturity, the N-fertilized treatments significantly increased the two-year average N accumulation amount (NAA) by 52.04–129.98%, with no further increase beyond 105 kg N ha−1. N fertilization also improved the two-year average N translocation efficiency (NTE) by 56.89–63.80% and the N contribution proportion (NCP) of wheat vegetative organs by 27.79–57.83%, peaking in the lower-N treatment (N52.5). However, high-N treatment (N210) led to an increase in NO3-N accumulation in the 0–100 cm soil layer, with an increase of 26.27% in 2018 and 122.44% in 2019. This higher soil NO3-N accumulation in the 0–100 cm layer decreased NHI, NUE, NAE, NPFP, and NMB. Additionally, N fertilization significantly reduced the two-year average N harvest index (NHI) by 9.89–12.85% and N utilization efficiency (NUE) by 11.14–20.79%, both decreasing with higher N application rates. The NAA followed the trend of anthesis > maturity > jointing. At the 105 kg N ha−1 rate, the highest N agronomic efficiency (NAE) (9.31 kg kg−1), N recovery efficiency (NRE) (38.32%), and N marginal benefit (NMB) (10.67 kg kg−1) were observed. Higher dry matter translocation amount (DTA) and N translocation amount (NTA) reduced NHI and NUE, whereas higher NTE improved NHI, NUE, and N partial factor productivity (NPFP). Overall, N fertilization enhanced N-use efficiency in spring wheat by improving N translocation rather than dry matter translocation.","PeriodicalId":7601,"journal":{"name":"Agronomy","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does Nitrogen Fertilization Improve Nitrogen-Use Efficiency in Spring Wheat?\",\"authors\":\"Aixia Xu, Yafei Chen, Xuexue Wei, Zechariah Effah, Lingling Li, Junhong Xie, Chang Liu, Sumera Anwar\",\"doi\":\"10.3390/agronomy14092049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the effects and mechanism of prolonged inorganic nitrogen (N) fertilization on the N-use efficiency of spring wheat (Triticum aestivum L.), a long-term study initiated in 2003 was conducted. The study analyzed how N fertilization affects dry matter translocation, N translocation, soil NO3-N, and N-use efficiency. Five different N-fertilizer rate treatments were tested: N0, N52.5, N105, N157.5, and N210, corresponding to annual N fertilizer doses of 0, 52.5, 105.0, 157.5, and 210.0 kg N ha−1, respectively. Results showed that increasing N-fertilizer rates significantly enhanced the two-year average dry matter accumulation amount (DMA) at maturity by 22.97–56.25% and pre-flowering crop growth rate (CGR) by 17.11–92.85%, with no significant increase beyond 105 kg N ha−1. However, no significant correlation was observed between the dry matter translocation efficiency (DTE) and wheat grain yield. Both insufficient and excessive N applications resulted in an imbalanced N distribution favoring vegetative growth over reproductive growth, thus negatively impacting N-use efficiency. At maturity, the N-fertilized treatments significantly increased the two-year average N accumulation amount (NAA) by 52.04–129.98%, with no further increase beyond 105 kg N ha−1. N fertilization also improved the two-year average N translocation efficiency (NTE) by 56.89–63.80% and the N contribution proportion (NCP) of wheat vegetative organs by 27.79–57.83%, peaking in the lower-N treatment (N52.5). However, high-N treatment (N210) led to an increase in NO3-N accumulation in the 0–100 cm soil layer, with an increase of 26.27% in 2018 and 122.44% in 2019. This higher soil NO3-N accumulation in the 0–100 cm layer decreased NHI, NUE, NAE, NPFP, and NMB. Additionally, N fertilization significantly reduced the two-year average N harvest index (NHI) by 9.89–12.85% and N utilization efficiency (NUE) by 11.14–20.79%, both decreasing with higher N application rates. The NAA followed the trend of anthesis > maturity > jointing. At the 105 kg N ha−1 rate, the highest N agronomic efficiency (NAE) (9.31 kg kg−1), N recovery efficiency (NRE) (38.32%), and N marginal benefit (NMB) (10.67 kg kg−1) were observed. Higher dry matter translocation amount (DTA) and N translocation amount (NTA) reduced NHI and NUE, whereas higher NTE improved NHI, NUE, and N partial factor productivity (NPFP). Overall, N fertilization enhanced N-use efficiency in spring wheat by improving N translocation rather than dry matter translocation.\",\"PeriodicalId\":7601,\"journal\":{\"name\":\"Agronomy\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy14092049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agronomy14092049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Does Nitrogen Fertilization Improve Nitrogen-Use Efficiency in Spring Wheat?
To investigate the effects and mechanism of prolonged inorganic nitrogen (N) fertilization on the N-use efficiency of spring wheat (Triticum aestivum L.), a long-term study initiated in 2003 was conducted. The study analyzed how N fertilization affects dry matter translocation, N translocation, soil NO3-N, and N-use efficiency. Five different N-fertilizer rate treatments were tested: N0, N52.5, N105, N157.5, and N210, corresponding to annual N fertilizer doses of 0, 52.5, 105.0, 157.5, and 210.0 kg N ha−1, respectively. Results showed that increasing N-fertilizer rates significantly enhanced the two-year average dry matter accumulation amount (DMA) at maturity by 22.97–56.25% and pre-flowering crop growth rate (CGR) by 17.11–92.85%, with no significant increase beyond 105 kg N ha−1. However, no significant correlation was observed between the dry matter translocation efficiency (DTE) and wheat grain yield. Both insufficient and excessive N applications resulted in an imbalanced N distribution favoring vegetative growth over reproductive growth, thus negatively impacting N-use efficiency. At maturity, the N-fertilized treatments significantly increased the two-year average N accumulation amount (NAA) by 52.04–129.98%, with no further increase beyond 105 kg N ha−1. N fertilization also improved the two-year average N translocation efficiency (NTE) by 56.89–63.80% and the N contribution proportion (NCP) of wheat vegetative organs by 27.79–57.83%, peaking in the lower-N treatment (N52.5). However, high-N treatment (N210) led to an increase in NO3-N accumulation in the 0–100 cm soil layer, with an increase of 26.27% in 2018 and 122.44% in 2019. This higher soil NO3-N accumulation in the 0–100 cm layer decreased NHI, NUE, NAE, NPFP, and NMB. Additionally, N fertilization significantly reduced the two-year average N harvest index (NHI) by 9.89–12.85% and N utilization efficiency (NUE) by 11.14–20.79%, both decreasing with higher N application rates. The NAA followed the trend of anthesis > maturity > jointing. At the 105 kg N ha−1 rate, the highest N agronomic efficiency (NAE) (9.31 kg kg−1), N recovery efficiency (NRE) (38.32%), and N marginal benefit (NMB) (10.67 kg kg−1) were observed. Higher dry matter translocation amount (DTA) and N translocation amount (NTA) reduced NHI and NUE, whereas higher NTE improved NHI, NUE, and N partial factor productivity (NPFP). Overall, N fertilization enhanced N-use efficiency in spring wheat by improving N translocation rather than dry matter translocation.