{"title":"基于混合信号处理技术的小样本滚动轴承故障诊断方法研究","authors":"Peibo Yu, Jianjie Zhang, Baobao Zhang, Jianhui Cao, Yihang Peng","doi":"10.3390/sym16091178","DOIUrl":null,"url":null,"abstract":"The diagnosis of bearing faults is a crucial aspect of ensuring the optimal functioning of mechanical equipment. However, in practice, the use of small samples and variable operating conditions may result in suboptimal generalization performance, reduced accuracy, and overfitting for these methods. To address this challenge, this study proposes a bearing fault diagnosis method based on a symmetric two-stream convolutional neural network (CNN). The method employs hybrid signal processing techniques to address the issue of limited data. The method employs a symmetric parallel convolutional neural network (CNN) for the analysis of bearing data. Initially, the data are transformed into time–frequency maps through the utilization of the short-time Fourier transform (STFT) and the simultaneous compressed wavelet transform (SCWT). Subsequently, two sets of one-dimensional vectors are generated by reconstructing the high-resolution features of the faulty samples using a symmetric parallel convolutional neural network (CNN). Feature splicing and fusion are then performed to generate bearing fault diagnosis information and assist fault classification. The experimental results demonstrate that the proposed mixed-signal processing method is effective on small-sample datasets, and verify the feasibility and generality of the symmetric parallel CNN-support vector machine (SVM) model for bearing fault diagnosis under small-sample conditions.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Small Sample Rolling Bearing Fault Diagnosis Method Based on Mixed Signal Processing Technology\",\"authors\":\"Peibo Yu, Jianjie Zhang, Baobao Zhang, Jianhui Cao, Yihang Peng\",\"doi\":\"10.3390/sym16091178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnosis of bearing faults is a crucial aspect of ensuring the optimal functioning of mechanical equipment. However, in practice, the use of small samples and variable operating conditions may result in suboptimal generalization performance, reduced accuracy, and overfitting for these methods. To address this challenge, this study proposes a bearing fault diagnosis method based on a symmetric two-stream convolutional neural network (CNN). The method employs hybrid signal processing techniques to address the issue of limited data. The method employs a symmetric parallel convolutional neural network (CNN) for the analysis of bearing data. Initially, the data are transformed into time–frequency maps through the utilization of the short-time Fourier transform (STFT) and the simultaneous compressed wavelet transform (SCWT). Subsequently, two sets of one-dimensional vectors are generated by reconstructing the high-resolution features of the faulty samples using a symmetric parallel convolutional neural network (CNN). Feature splicing and fusion are then performed to generate bearing fault diagnosis information and assist fault classification. The experimental results demonstrate that the proposed mixed-signal processing method is effective on small-sample datasets, and verify the feasibility and generality of the symmetric parallel CNN-support vector machine (SVM) model for bearing fault diagnosis under small-sample conditions.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16091178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16091178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Small Sample Rolling Bearing Fault Diagnosis Method Based on Mixed Signal Processing Technology
The diagnosis of bearing faults is a crucial aspect of ensuring the optimal functioning of mechanical equipment. However, in practice, the use of small samples and variable operating conditions may result in suboptimal generalization performance, reduced accuracy, and overfitting for these methods. To address this challenge, this study proposes a bearing fault diagnosis method based on a symmetric two-stream convolutional neural network (CNN). The method employs hybrid signal processing techniques to address the issue of limited data. The method employs a symmetric parallel convolutional neural network (CNN) for the analysis of bearing data. Initially, the data are transformed into time–frequency maps through the utilization of the short-time Fourier transform (STFT) and the simultaneous compressed wavelet transform (SCWT). Subsequently, two sets of one-dimensional vectors are generated by reconstructing the high-resolution features of the faulty samples using a symmetric parallel convolutional neural network (CNN). Feature splicing and fusion are then performed to generate bearing fault diagnosis information and assist fault classification. The experimental results demonstrate that the proposed mixed-signal processing method is effective on small-sample datasets, and verify the feasibility and generality of the symmetric parallel CNN-support vector machine (SVM) model for bearing fault diagnosis under small-sample conditions.