利用格罗弗算法实现云基础设施中的量子可搜索加密及其在 AES 资源估算中的应用

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY International Journal of Theoretical Physics Pub Date : 2024-08-21 DOI:10.1007/s10773-024-05751-3
Mohit Joshi, Manoj Kumar Mishra, S. Karthikeyan
{"title":"利用格罗弗算法实现云基础设施中的量子可搜索加密及其在 AES 资源估算中的应用","authors":"Mohit Joshi, Manoj Kumar Mishra, S. Karthikeyan","doi":"10.1007/s10773-024-05751-3","DOIUrl":null,"url":null,"abstract":"<p>Designing efficient techniques to search over encrypted data space has always been an intriguing security challenge, although many solutions based on classical searching methods have been proposed. Grover’s algorithm, a quantum counterpart of searching algorithms, has proven to provide quadratic speedup over any classical search technique on an unsorted database. However, this algorithm is unable to search over encrypted data space. This study proposed an extension of Grover’s algorithm to enable search over encrypted dataspace, allowing clients with limited-capability quantum resources to delegate complex search operations to an untrusted server. The blindness of data in this protocol is achieved by encrypting qubits using Pauli’s rotation gates that maximally mix the outgoing states. The empirical estimation of the overhead of the computation due to the introduction of this technique has been analyzed. This estimate has been used for comparative analysis, showing the efficiency of the proposed protocol. A practical application of the proposed searchable encryption technique has been utilized to estimate the increase in resources needed to carry out a brute-force attack on AES encryption using secure Grover’s algorithm. Furthermore, an extensive experimental analysis of the effect of noise has been studied using four different noise models: amplitude damping, phase damping, depolarizing noise, and bit-flip noise. The investigation provided useful insight into the behavior of the proposed algorithm under noisy conditions and also estimated the tolerance thresholds of the proposed algorithm under different noise models.</p>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Grover’s Algorithm for Quantum Searchable Encryption in Cloud Infrastructure and its application in AES Resource Estimation\",\"authors\":\"Mohit Joshi, Manoj Kumar Mishra, S. Karthikeyan\",\"doi\":\"10.1007/s10773-024-05751-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Designing efficient techniques to search over encrypted data space has always been an intriguing security challenge, although many solutions based on classical searching methods have been proposed. Grover’s algorithm, a quantum counterpart of searching algorithms, has proven to provide quadratic speedup over any classical search technique on an unsorted database. However, this algorithm is unable to search over encrypted data space. This study proposed an extension of Grover’s algorithm to enable search over encrypted dataspace, allowing clients with limited-capability quantum resources to delegate complex search operations to an untrusted server. The blindness of data in this protocol is achieved by encrypting qubits using Pauli’s rotation gates that maximally mix the outgoing states. The empirical estimation of the overhead of the computation due to the introduction of this technique has been analyzed. This estimate has been used for comparative analysis, showing the efficiency of the proposed protocol. A practical application of the proposed searchable encryption technique has been utilized to estimate the increase in resources needed to carry out a brute-force attack on AES encryption using secure Grover’s algorithm. Furthermore, an extensive experimental analysis of the effect of noise has been studied using four different noise models: amplitude damping, phase damping, depolarizing noise, and bit-flip noise. The investigation provided useful insight into the behavior of the proposed algorithm under noisy conditions and also estimated the tolerance thresholds of the proposed algorithm under different noise models.</p>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10773-024-05751-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10773-024-05751-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管已经提出了许多基于经典搜索方法的解决方案,但设计高效的加密数据空间搜索技术一直是一个引人入胜的安全挑战。格罗弗算法是搜索算法的量子对应算法,已被证明在无排序数据库上比任何经典搜索技术都有四倍的速度提升。然而,这种算法无法在加密数据空间上进行搜索。本研究提出了对格罗弗算法的扩展,以实现对加密数据空间的搜索,从而允许能力有限的量子资源客户端将复杂的搜索操作委托给不受信任的服务器。该协议中的数据盲区是通过使用保利旋转门加密量子比特来实现的,这种旋转门能最大限度地混合传出状态。我们分析了因引入这种技术而产生的计算开销的经验估计值。这一估算结果被用于比较分析,显示了所提协议的效率。利用所提出的可搜索加密技术的实际应用,估算了使用安全格罗弗算法对 AES 加密进行暴力破解所需的资源增加量。此外,还利用四种不同的噪声模型对噪声的影响进行了广泛的实验分析:振幅阻尼、相位阻尼、去极化噪声和比特翻转噪声。这项研究为了解拟议算法在噪声条件下的行为提供了有用的见解,还估算了拟议算法在不同噪声模型下的容限阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Grover’s Algorithm for Quantum Searchable Encryption in Cloud Infrastructure and its application in AES Resource Estimation

Designing efficient techniques to search over encrypted data space has always been an intriguing security challenge, although many solutions based on classical searching methods have been proposed. Grover’s algorithm, a quantum counterpart of searching algorithms, has proven to provide quadratic speedup over any classical search technique on an unsorted database. However, this algorithm is unable to search over encrypted data space. This study proposed an extension of Grover’s algorithm to enable search over encrypted dataspace, allowing clients with limited-capability quantum resources to delegate complex search operations to an untrusted server. The blindness of data in this protocol is achieved by encrypting qubits using Pauli’s rotation gates that maximally mix the outgoing states. The empirical estimation of the overhead of the computation due to the introduction of this technique has been analyzed. This estimate has been used for comparative analysis, showing the efficiency of the proposed protocol. A practical application of the proposed searchable encryption technique has been utilized to estimate the increase in resources needed to carry out a brute-force attack on AES encryption using secure Grover’s algorithm. Furthermore, an extensive experimental analysis of the effect of noise has been studied using four different noise models: amplitude damping, phase damping, depolarizing noise, and bit-flip noise. The investigation provided useful insight into the behavior of the proposed algorithm under noisy conditions and also estimated the tolerance thresholds of the proposed algorithm under different noise models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
期刊最新文献
Diatomic Molecules in deSitter and Anti-deSitter Spaces Analytical and Phase Space Description of “Near” States Secure Multiparty Logical AND Based on Quantum Homomorphic Encryption and Its Applications Controlling of Steered Quantum Coherence in Non-Markovian System Multiple Soliton Solutions of Generalized Reaction Duffing Model Arising in Various Mechanical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1