Yinghong Jiang, Jing He, Duanqiang Zhai, Chuyan Hu, Long Yu
{"title":"分析人类足迹影响下流域生境质量的演变及其驱动因素","authors":"Yinghong Jiang, Jing He, Duanqiang Zhai, Chuyan Hu, Long Yu","doi":"10.3389/fenvs.2024.1431295","DOIUrl":null,"url":null,"abstract":"Habitat quality (HQ) serves as a pivotal metric for assessing biodiversity and ecosystem health, with alterations in land use driven by human activities posing direct implications on HQ and ecological sustainability within river basins. Prior research on HQ has predominantly centered on historical land use changes, neglecting the comprehensive consideration of future land use transformations and ecological zoning strategies’ influence on HQ. Consequently, this investigation simulates potential land use shifts in the Min River Basin across various future scenarios, leveraging the integration of PLUS and InVEST models, quantitatively dissects HQ’s responsiveness to these changes and delves into the spatial differentiation dynamics underlying these responses, while also exploring the drivers behind such differentiation. Synergizing with the Human Footprint Index (HFI), the study devises a rational ecological zoning plan tailored to the region and outlines targeted control measures for each zone. The results of the study showed that: 1) the east-central part of the Min River Basin was subject to a greater degree of human interference, and the trend of interconversion between grassland, forest land, and cropland was relatively significant, with construction land mainly originating from the transfer of cropland; 2) from 2000 to 2020, average HQ scores for priority protected zones, priority recovery zones, and appropriate development zones stood at 0.9372, 0.2697, and 0.6098, respectively, accompanied by a rise in the proportion of low and moderate HQ areas to 15% and 17%; (3) DEM and Slope were the main drivers affecting HQ, and their explanatory power reached 0.519 and 0.426, respectively; (4) in comparison to a natural development scenario (ND), the planning protection scenario (PP) offers greater promise for ecological preservation and sustainable development within the Min River Basin. The research results can provide technical support for the ecological restoration of land resources and the development and protection of national land space in watershed areas.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"47 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the evolution of watershed habitat quality and its drivers under the influence of the human footprint\",\"authors\":\"Yinghong Jiang, Jing He, Duanqiang Zhai, Chuyan Hu, Long Yu\",\"doi\":\"10.3389/fenvs.2024.1431295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Habitat quality (HQ) serves as a pivotal metric for assessing biodiversity and ecosystem health, with alterations in land use driven by human activities posing direct implications on HQ and ecological sustainability within river basins. Prior research on HQ has predominantly centered on historical land use changes, neglecting the comprehensive consideration of future land use transformations and ecological zoning strategies’ influence on HQ. Consequently, this investigation simulates potential land use shifts in the Min River Basin across various future scenarios, leveraging the integration of PLUS and InVEST models, quantitatively dissects HQ’s responsiveness to these changes and delves into the spatial differentiation dynamics underlying these responses, while also exploring the drivers behind such differentiation. Synergizing with the Human Footprint Index (HFI), the study devises a rational ecological zoning plan tailored to the region and outlines targeted control measures for each zone. The results of the study showed that: 1) the east-central part of the Min River Basin was subject to a greater degree of human interference, and the trend of interconversion between grassland, forest land, and cropland was relatively significant, with construction land mainly originating from the transfer of cropland; 2) from 2000 to 2020, average HQ scores for priority protected zones, priority recovery zones, and appropriate development zones stood at 0.9372, 0.2697, and 0.6098, respectively, accompanied by a rise in the proportion of low and moderate HQ areas to 15% and 17%; (3) DEM and Slope were the main drivers affecting HQ, and their explanatory power reached 0.519 and 0.426, respectively; (4) in comparison to a natural development scenario (ND), the planning protection scenario (PP) offers greater promise for ecological preservation and sustainable development within the Min River Basin. The research results can provide technical support for the ecological restoration of land resources and the development and protection of national land space in watershed areas.\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1431295\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1431295","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Analysis of the evolution of watershed habitat quality and its drivers under the influence of the human footprint
Habitat quality (HQ) serves as a pivotal metric for assessing biodiversity and ecosystem health, with alterations in land use driven by human activities posing direct implications on HQ and ecological sustainability within river basins. Prior research on HQ has predominantly centered on historical land use changes, neglecting the comprehensive consideration of future land use transformations and ecological zoning strategies’ influence on HQ. Consequently, this investigation simulates potential land use shifts in the Min River Basin across various future scenarios, leveraging the integration of PLUS and InVEST models, quantitatively dissects HQ’s responsiveness to these changes and delves into the spatial differentiation dynamics underlying these responses, while also exploring the drivers behind such differentiation. Synergizing with the Human Footprint Index (HFI), the study devises a rational ecological zoning plan tailored to the region and outlines targeted control measures for each zone. The results of the study showed that: 1) the east-central part of the Min River Basin was subject to a greater degree of human interference, and the trend of interconversion between grassland, forest land, and cropland was relatively significant, with construction land mainly originating from the transfer of cropland; 2) from 2000 to 2020, average HQ scores for priority protected zones, priority recovery zones, and appropriate development zones stood at 0.9372, 0.2697, and 0.6098, respectively, accompanied by a rise in the proportion of low and moderate HQ areas to 15% and 17%; (3) DEM and Slope were the main drivers affecting HQ, and their explanatory power reached 0.519 and 0.426, respectively; (4) in comparison to a natural development scenario (ND), the planning protection scenario (PP) offers greater promise for ecological preservation and sustainable development within the Min River Basin. The research results can provide technical support for the ecological restoration of land resources and the development and protection of national land space in watershed areas.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.