{"title":"布里奥斯奇 16--Skyrme-Faddeev 手性模型中的孤子和光子","authors":"Yu. P. Rybakov","doi":"10.1134/S0202289324700142","DOIUrl":null,"url":null,"abstract":"<p>Following Einstein’s idea of representing particles as solitons, i.e., clots of some nonlinear universal field, the Brioschi 16-spinors are introduced since they prove to be well suited for the role of this fundamental field. Taking into account the principle of spontaneous symmetry breaking as the foundation for the stability of particles as topological solitons, the 16-spinor realization of the Skyrme–Faddeev chiral model is suggested. Within the scope of this model, it is possible to describe photons as solitons, the interaction with electromagnetic and gravitational fields being included. The existence of asymptotically exact soliton solutions to the equations of motion is proven, with the special large parameter <span>\\(\\tau\\)</span> being introduced.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brioschi 16-Spinors and Photons as Solitons in the Skyrme—Faddeev Chiral Model\",\"authors\":\"Yu. P. Rybakov\",\"doi\":\"10.1134/S0202289324700142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following Einstein’s idea of representing particles as solitons, i.e., clots of some nonlinear universal field, the Brioschi 16-spinors are introduced since they prove to be well suited for the role of this fundamental field. Taking into account the principle of spontaneous symmetry breaking as the foundation for the stability of particles as topological solitons, the 16-spinor realization of the Skyrme–Faddeev chiral model is suggested. Within the scope of this model, it is possible to describe photons as solitons, the interaction with electromagnetic and gravitational fields being included. The existence of asymptotically exact soliton solutions to the equations of motion is proven, with the special large parameter <span>\\\\(\\\\tau\\\\)</span> being introduced.</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289324700142\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289324700142","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Brioschi 16-Spinors and Photons as Solitons in the Skyrme—Faddeev Chiral Model
Following Einstein’s idea of representing particles as solitons, i.e., clots of some nonlinear universal field, the Brioschi 16-spinors are introduced since they prove to be well suited for the role of this fundamental field. Taking into account the principle of spontaneous symmetry breaking as the foundation for the stability of particles as topological solitons, the 16-spinor realization of the Skyrme–Faddeev chiral model is suggested. Within the scope of this model, it is possible to describe photons as solitons, the interaction with electromagnetic and gravitational fields being included. The existence of asymptotically exact soliton solutions to the equations of motion is proven, with the special large parameter \(\tau\) being introduced.
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community