{"title":"隐花植物太平洋半知母(Hemiselmis pacifica)通过藻体脂蛋白光谱吸收的变化实现互补色度适应","authors":"Ian D. Jin, Tammi L. Richardson","doi":"10.3354/ame02010","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Cryptophytes are eukaryotic microalgae found in a variety of aquatic environments, from tea-colored ponds and lakes to the blue-water open ocean. To broaden the range of their spectral absorption beyond the limits of chlorophyll <i>a</i>, cryptophytes contain phycobiliprotein (PBP) accessory pigments. <i>Hemiselmis pacifica</i> contains the PBP cryptophyte-phycocyanin 577 (Cr-PC 577), which allows it to absorb green to orange wavelengths of light. Here, we characterized variability in PBP absorbance and growth rates of <i>H. pacifica</i> when this species was grown in nutrient-rich environments of differing spectral quality but equal light intensity. Two weeks after a shift from white to green light, <i>H. pacifica</i> altered the absorbance of its Cr-PC 577 to increase capture of green photons. Further, these complementary shifts were reversible when cultures were returned to the white-light environment, and the timescale of the reversal was faster than the original shift (~1 wk). Growth rates of <i>H. pacifica</i> in green light (0.25 d<sup>-1</sup>) were lower than in white-light controls (0.32 d<sup>-1</sup>), but not significantly different from cells grown in red light (0.27 d<sup>-1</sup>). The ability to adjust quickly to changes in light quality may confer an ecological advantage to cryptophytes when their environment is affected by processes such as eutrophication, deforestation/afforestation, or browning.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementary chromatic acclimation by shifts in phycobiliprotein spectral absorption in the cryptophyte Hemiselmis pacifica\",\"authors\":\"Ian D. Jin, Tammi L. Richardson\",\"doi\":\"10.3354/ame02010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT: Cryptophytes are eukaryotic microalgae found in a variety of aquatic environments, from tea-colored ponds and lakes to the blue-water open ocean. To broaden the range of their spectral absorption beyond the limits of chlorophyll <i>a</i>, cryptophytes contain phycobiliprotein (PBP) accessory pigments. <i>Hemiselmis pacifica</i> contains the PBP cryptophyte-phycocyanin 577 (Cr-PC 577), which allows it to absorb green to orange wavelengths of light. Here, we characterized variability in PBP absorbance and growth rates of <i>H. pacifica</i> when this species was grown in nutrient-rich environments of differing spectral quality but equal light intensity. Two weeks after a shift from white to green light, <i>H. pacifica</i> altered the absorbance of its Cr-PC 577 to increase capture of green photons. Further, these complementary shifts were reversible when cultures were returned to the white-light environment, and the timescale of the reversal was faster than the original shift (~1 wk). Growth rates of <i>H. pacifica</i> in green light (0.25 d<sup>-1</sup>) were lower than in white-light controls (0.32 d<sup>-1</sup>), but not significantly different from cells grown in red light (0.27 d<sup>-1</sup>). The ability to adjust quickly to changes in light quality may confer an ecological advantage to cryptophytes when their environment is affected by processes such as eutrophication, deforestation/afforestation, or browning.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3354/ame02010\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/ame02010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Complementary chromatic acclimation by shifts in phycobiliprotein spectral absorption in the cryptophyte Hemiselmis pacifica
ABSTRACT: Cryptophytes are eukaryotic microalgae found in a variety of aquatic environments, from tea-colored ponds and lakes to the blue-water open ocean. To broaden the range of their spectral absorption beyond the limits of chlorophyll a, cryptophytes contain phycobiliprotein (PBP) accessory pigments. Hemiselmis pacifica contains the PBP cryptophyte-phycocyanin 577 (Cr-PC 577), which allows it to absorb green to orange wavelengths of light. Here, we characterized variability in PBP absorbance and growth rates of H. pacifica when this species was grown in nutrient-rich environments of differing spectral quality but equal light intensity. Two weeks after a shift from white to green light, H. pacifica altered the absorbance of its Cr-PC 577 to increase capture of green photons. Further, these complementary shifts were reversible when cultures were returned to the white-light environment, and the timescale of the reversal was faster than the original shift (~1 wk). Growth rates of H. pacifica in green light (0.25 d-1) were lower than in white-light controls (0.32 d-1), but not significantly different from cells grown in red light (0.27 d-1). The ability to adjust quickly to changes in light quality may confer an ecological advantage to cryptophytes when their environment is affected by processes such as eutrophication, deforestation/afforestation, or browning.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.