球面可转向矢量差分麦克风阵列

IF 4.1 2区 计算机科学 Q1 ACOUSTICS IEEE/ACM Transactions on Audio, Speech, and Language Processing Pub Date : 2024-09-10 DOI:10.1109/TASLP.2024.3458799
Hüseyin Hacıhabiboğlu
{"title":"球面可转向矢量差分麦克风阵列","authors":"Hüseyin Hacıhabiboğlu","doi":"10.1109/TASLP.2024.3458799","DOIUrl":null,"url":null,"abstract":"Differential microphone arrays (DMAs) use multiple omnidirectional microphones for synthesising higher-order microphone directivity patterns. In their most basic form, they can be used to obtain fixed-directivity or horizontally steerable beamformers that can satisfy certain constraints. We propose a vector differential microphone array (VDMA) which is frequency- and direction-invariantly steerable in three dimensions. The proposed design comprises pressure and particle velocity sensors positioned on a circular constellation in a plane and allows extracting the third-order spherical harmonic decomposition of the sound field. This decomposition can then be used to obtain spherically direction-invariant steered beams. Synthesis of a maximum directivity factor (MaxDF) directivity pattern is demonstrated. A closed-form expression for the proposed array's white noise gain (WNG) is derived. The robustness of the proposed design to noise is analysed.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4342-4354"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherically Steerable Vector Differential Microphone Arrays\",\"authors\":\"Hüseyin Hacıhabiboğlu\",\"doi\":\"10.1109/TASLP.2024.3458799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential microphone arrays (DMAs) use multiple omnidirectional microphones for synthesising higher-order microphone directivity patterns. In their most basic form, they can be used to obtain fixed-directivity or horizontally steerable beamformers that can satisfy certain constraints. We propose a vector differential microphone array (VDMA) which is frequency- and direction-invariantly steerable in three dimensions. The proposed design comprises pressure and particle velocity sensors positioned on a circular constellation in a plane and allows extracting the third-order spherical harmonic decomposition of the sound field. This decomposition can then be used to obtain spherically direction-invariant steered beams. Synthesis of a maximum directivity factor (MaxDF) directivity pattern is demonstrated. A closed-form expression for the proposed array's white noise gain (WNG) is derived. The robustness of the proposed design to noise is analysed.\",\"PeriodicalId\":13332,\"journal\":{\"name\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"volume\":\"32 \",\"pages\":\"4342-4354\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675447/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10675447/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

差分传声器阵列(DMA)使用多个全向传声器合成高阶传声器指向性模式。在最基本的形式中,它们可用于获得固定指向性或水平转向波束成形器,并能满足某些约束条件。我们提出了一种矢量差分传声器阵列(VDMA),它在三个维度上具有频率和方向可变的转向性。所提出的设计包括压力和粒子速度传感器,它们被放置在平面上的一个圆形星座上,可以提取声场的三阶球形谐波分解。然后,可以利用这种分解来获得球面方向不变的转向波束。演示了最大指向性系数(MaxDF)指向性模式的合成。得出了拟议阵列白噪声增益(WNG)的闭式表达式。分析了拟议设计对噪声的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spherically Steerable Vector Differential Microphone Arrays
Differential microphone arrays (DMAs) use multiple omnidirectional microphones for synthesising higher-order microphone directivity patterns. In their most basic form, they can be used to obtain fixed-directivity or horizontally steerable beamformers that can satisfy certain constraints. We propose a vector differential microphone array (VDMA) which is frequency- and direction-invariantly steerable in three dimensions. The proposed design comprises pressure and particle velocity sensors positioned on a circular constellation in a plane and allows extracting the third-order spherical harmonic decomposition of the sound field. This decomposition can then be used to obtain spherically direction-invariant steered beams. Synthesis of a maximum directivity factor (MaxDF) directivity pattern is demonstrated. A closed-form expression for the proposed array's white noise gain (WNG) is derived. The robustness of the proposed design to noise is analysed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
期刊最新文献
CLAPSep: Leveraging Contrastive Pre-Trained Model for Multi-Modal Query-Conditioned Target Sound Extraction Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features FTDKD: Frequency-Time Domain Knowledge Distillation for Low-Quality Compressed Audio Deepfake Detection ELSF: Entity-Level Slot Filling Framework for Joint Multiple Intent Detection and Slot Filling Proper Error Estimation and Calibration for Attention-Based Encoder-Decoder Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1