PE-wav2vec:用于 TTS 中自监督前奏学习的前奏增强型语音模型

IF 4.1 2区 计算机科学 Q1 ACOUSTICS IEEE/ACM Transactions on Audio, Speech, and Language Processing Pub Date : 2024-08-23 DOI:10.1109/TASLP.2024.3449148
Zhao-Ci Liu;Liping Chen;Ya-Jun Hu;Zhen-Hua Ling;Jia Pan
{"title":"PE-wav2vec:用于 TTS 中自监督前奏学习的前奏增强型语音模型","authors":"Zhao-Ci Liu;Liping Chen;Ya-Jun Hu;Zhen-Hua Ling;Jia Pan","doi":"10.1109/TASLP.2024.3449148","DOIUrl":null,"url":null,"abstract":"This paper investigates leveraging large-scale untranscribed speech data to enhance the prosody modelling capability of \n<italic>text-to-speech</i>\n (TTS) models. On the basis of the self-supervised speech model wav2vec 2.0, \n<italic>Prosody-Enhanced wav2vec</i>\n (PE-wav2vec) is proposed by introducing prosody learning. Specifically, prosody learning is achieved by applying supervision from the \n<italic>linear predictive coding</i>\n (LPC) residual signals on the initial Transformer blocks in the wav2vec 2.0 architecture. The embedding vectors extracted with the initial Transformer blocks of the PE-wav2vec model are utilised as prosodic representations for the corresponding frames in a speech utterance. To apply the PE-wav2vec representations in TTS, an acoustic model named \n<italic>Speech Synthesis model conditioned on Self-Supervisedly Learned Prosodic Representations</i>\n (S4LPR) is designed on the basis of FastSpeech 2. The experimental results demonstrate that the proposed PE-wav2vec model can provide richer prosody descriptions of speech than the vanilla wav2vec 2.0 model can. Furthermore, the S4LPR model using PE-wav2vec representations can effectively improve the subjective naturalness and reduce the objective distortions of synthetic speech compared with baseline models.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4199-4210"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PE-Wav2vec: A Prosody-Enhanced Speech Model for Self-Supervised Prosody Learning in TTS\",\"authors\":\"Zhao-Ci Liu;Liping Chen;Ya-Jun Hu;Zhen-Hua Ling;Jia Pan\",\"doi\":\"10.1109/TASLP.2024.3449148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates leveraging large-scale untranscribed speech data to enhance the prosody modelling capability of \\n<italic>text-to-speech</i>\\n (TTS) models. On the basis of the self-supervised speech model wav2vec 2.0, \\n<italic>Prosody-Enhanced wav2vec</i>\\n (PE-wav2vec) is proposed by introducing prosody learning. Specifically, prosody learning is achieved by applying supervision from the \\n<italic>linear predictive coding</i>\\n (LPC) residual signals on the initial Transformer blocks in the wav2vec 2.0 architecture. The embedding vectors extracted with the initial Transformer blocks of the PE-wav2vec model are utilised as prosodic representations for the corresponding frames in a speech utterance. To apply the PE-wav2vec representations in TTS, an acoustic model named \\n<italic>Speech Synthesis model conditioned on Self-Supervisedly Learned Prosodic Representations</i>\\n (S4LPR) is designed on the basis of FastSpeech 2. The experimental results demonstrate that the proposed PE-wav2vec model can provide richer prosody descriptions of speech than the vanilla wav2vec 2.0 model can. Furthermore, the S4LPR model using PE-wav2vec representations can effectively improve the subjective naturalness and reduce the objective distortions of synthetic speech compared with baseline models.\",\"PeriodicalId\":13332,\"journal\":{\"name\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"volume\":\"32 \",\"pages\":\"4199-4210\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10645206/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10645206/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了如何利用大规模非转录语音数据来增强文本到语音(TTS)模型的前音建模能力。在自监督语音模型 wav2vec 2.0 的基础上,通过引入前奏学习,提出了前奏增强型 wav2vec(PE-wav2vec)。具体来说,前音学习是通过对 wav2vec 2.0 架构中的初始变换器块应用线性预测编码(LPC)残差信号的监督来实现的。用 PE-wav2vec 模型的初始变换器块提取的嵌入向量可用作语音语篇中相应帧的前音表示。为了将 PE-wav2vec 表示法应用于 TTS,在 FastSpeech 2 的基础上设计了一个名为 "基于自监督学习前音表示法(S4LPR)的语音合成模型 "的声学模型。实验结果表明,与 vanilla wav2vec 2.0 模型相比,所提出的 PE-wav2vec 模型能提供更丰富的语音前体描述。此外,与基线模型相比,使用 PE-wav2vec 表示法的 S4LPR 模型能有效提高合成语音的主观自然度,减少客观失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PE-Wav2vec: A Prosody-Enhanced Speech Model for Self-Supervised Prosody Learning in TTS
This paper investigates leveraging large-scale untranscribed speech data to enhance the prosody modelling capability of text-to-speech (TTS) models. On the basis of the self-supervised speech model wav2vec 2.0, Prosody-Enhanced wav2vec (PE-wav2vec) is proposed by introducing prosody learning. Specifically, prosody learning is achieved by applying supervision from the linear predictive coding (LPC) residual signals on the initial Transformer blocks in the wav2vec 2.0 architecture. The embedding vectors extracted with the initial Transformer blocks of the PE-wav2vec model are utilised as prosodic representations for the corresponding frames in a speech utterance. To apply the PE-wav2vec representations in TTS, an acoustic model named Speech Synthesis model conditioned on Self-Supervisedly Learned Prosodic Representations (S4LPR) is designed on the basis of FastSpeech 2. The experimental results demonstrate that the proposed PE-wav2vec model can provide richer prosody descriptions of speech than the vanilla wav2vec 2.0 model can. Furthermore, the S4LPR model using PE-wav2vec representations can effectively improve the subjective naturalness and reduce the objective distortions of synthetic speech compared with baseline models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
期刊最新文献
CLAPSep: Leveraging Contrastive Pre-Trained Model for Multi-Modal Query-Conditioned Target Sound Extraction Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features FTDKD: Frequency-Time Domain Knowledge Distillation for Low-Quality Compressed Audio Deepfake Detection ELSF: Entity-Level Slot Filling Framework for Joint Multiple Intent Detection and Slot Filling Proper Error Estimation and Calibration for Attention-Based Encoder-Decoder Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1